Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861993

RESUMO

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Assuntos
Diferenciação Celular , Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Ligantes , Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases
2.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38108472

RESUMO

Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.


Assuntos
Dente , Animais , Camundongos , Dente Molar , Morfogênese/genética , Odontogênese/genética , Raiz Dentária
3.
Proc Natl Acad Sci U S A ; 121(13): e2314802121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498715

RESUMO

The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.


Assuntos
Células Ependimogliais , MAP Quinases Reguladas por Sinal Extracelular , Animais , Camundongos , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo
4.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272420

RESUMO

The vertebrate appendage comprises three primary segments, the stylopod, zeugopod and autopod, each separated by joints. The molecular mechanisms governing the specification of joint sites, which define segment lengths and thereby limb architecture, remain largely unknown. Existing literature suggests that reciprocal gradients of retinoic acid (RA) and fibroblast growth factor (FGF) signaling define the expression domains of the putative segment markers Meis1, Hoxa11 and Hoxa13. Barx1 is expressed in the presumptive joint sites. Our data demonstrate that RA-FGF signaling gradients define the expression domain of Barx1 in the first presumptive joint site. When misexpressed, Barx1 induces ectopic interzone-like structures, and its loss of function partially blocks interzone development. Simultaneous perturbations of RA-FGF signaling gradients result in predictable shifts of Barx1 expression domains along the proximo-distal axis and, consequently, in the formation of repositioned joints. Our data suggest that during early limb bud development in chick, Meis1 and Hoxa11 expression domains are overlapping, whereas the Barx1 expression domain resides within the Hoxa11 expression domain. However, once the interzone is formed, the expression domains are refined and the Barx1 expression domain becomes congruent with the border of these two putative segment markers.


Assuntos
Articulações , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Articulações/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Extremidades , Regulação da Expressão Gênica no Desenvolvimento
5.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38423763

RESUMO

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.


Assuntos
Células Receptoras Sensoriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Sobrevivência Celular , Células Receptoras Sensoriais/fisiologia , Axônios/fisiologia , Análise de Célula Única , Mamíferos
6.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762670

RESUMO

Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.


Assuntos
Anormalidades Craniofaciais , Peixe-Zebra , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/metabolismo , Nucleolina
7.
EMBO J ; 39(17): e105696, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716134

RESUMO

Lysosomal degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is emerging as a critical regulator of cell homeostasis and function. The recent identification of ER-phagy receptors has shed light on the molecular mechanisms underlining this process. However, the signaling pathways regulating ER-phagy in response to cellular needs are still largely unknown. We found that the nutrient responsive transcription factors TFEB and TFE3-master regulators of lysosomal biogenesis and autophagy-control ER-phagy by inducing the expression of the ER-phagy receptor FAM134B. The TFEB/TFE3-FAM134B axis promotes ER-phagy activation upon prolonged starvation. In addition, this pathway is activated in chondrocytes by FGF signaling, a critical regulator of skeletal growth. FGF signaling induces JNK-dependent proteasomal degradation of the insulin receptor substrate 1 (IRS1), which in turn inhibits the PI3K-PKB/Akt-mTORC1 pathway and promotes TFEB/TFE3 nuclear translocation and enhances FAM134B transcription. Notably, FAM134B is required for protein secretion in chondrocytes, and cartilage growth and bone mineralization in medaka fish. This study identifies a new signaling pathway that allows ER-phagy to respond to both metabolic and developmental cues.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Núcleo Celular/genética , Retículo Endoplasmático/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/genética , Camundongos , Oryzias
8.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651174

RESUMO

During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues.


Assuntos
Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Fator 4 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Animais , Padronização Corporal , Desenvolvimento Embrionário , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Fator 4 de Crescimento de Fibroblastos/genética , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Comunicação Parácrina/fisiologia , Transdução de Sinais
9.
Curr Osteoporos Rep ; 22(3): 340-352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739352

RESUMO

PURPOSE OF REVIEW: To illustrate the value of using zebrafish to understand the role of the Fgf signaling pathway during craniofacial skeletal development under normal and pathological conditions. RECENT FINDINGS: Recent data obtained from studies on zebrafish have demonstrated the genetic redundancy of Fgf signaling pathway and have identified new molecular partners of this signaling during the early stages of craniofacial skeletal development. Studies on zebrafish models demonstrate the involvement of the Fgf signaling pathway at every stage of craniofacial development. They particularly emphasize the central role of Fgf signaling pathway during the early stages of the development, which significantly impacts the formation of the various structures making up the craniofacial skeleton. This partly explains the craniofacial abnormalities observed in disorders associated with FGF signaling. Future research efforts should focus on investigating zebrafish Fgf signaling during more advanced stages, notably by establishing zebrafish models expressing mutations responsible for diseases such as craniosynostoses.


Assuntos
Anormalidades Craniofaciais , Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Peixe-Zebra , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Modelos Animais de Doenças , Crânio , Ossos Faciais/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975953

RESUMO

Fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signaling plays a crucial role in anterior-posterior (A-P) axial patterning of vertebrate embryos by promoting posterior development. In our screens for novel developmental regulators in Xenopus embryos, we identified Fam3b as a secreted factor regulated in ectodermal explants. Family with sequence similarity 3 member B (FAM3B)/PANDER (pancreatic-derived factor) is a cytokine involved in glucose metabolism, type 2 diabetes, and cancer in mammals. However, the molecular mechanism of FAM3B action in these processes remains poorly understood, largely because its receptor is still unidentified. Here we uncover an unexpected role of FAM3B acting as a FGF receptor (FGFR) ligand in Xenopus embryos. fam3b messenger RNA (mRNA) is initially expressed maternally and uniformly in the early Xenopus embryo and then in the epidermis at neurula stages. Overexpression of Xenopus fam3b mRNA inhibited cephalic structures and induced ectopic tail-like structures. Recombinant human FAM3B protein was purified readily from transfected tissue culture cells and, when injected into the blastocoele cavity, also caused outgrowth of tail-like structures at the expense of anterior structures, indicating FGF-like activity. Depletion of fam3b by specific antisense morpholino oligonucleotides in Xenopus resulted in macrocephaly in tailbud tadpoles, rescuable by FAM3B protein. Mechanistically, FAM3B protein bound to FGFR and activated the downstream ERK signaling in an FGFR-dependent manner. In Xenopus embryos, FGFR activity was required epistatically downstream of Fam3b to mediate its promotion of posterior cell fates. Our findings define a FAM3B/FGFR/ERK-signaling pathway that is required for axial patterning in Xenopus embryos and may provide molecular insights into FAM3B-associated human diseases.


Assuntos
Citocinas/fisiologia , Desenvolvimento Embrionário/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos
11.
Differentiation ; : 100741, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38040515

RESUMO

Fibroblast growth factor 10 (FGF10) is a major morphoregulatory factor that plays essential signaling roles during vertebrate multiorgan development and homeostasis. FGF10 is predominantly expressed in mesenchymal cells and signals though FGFR2b in adjacent epithelia to regulate branching morphogenesis, stem cell fate, tissue differentiation and proliferation, in addition to autocrine roles. Genetic loss of function analyses have revealed critical requirements for FGF10 signaling during limb, lung, digestive system, ectodermal, nervous system, craniofacial and cardiac development. Heterozygous FGF10 mutations have been identified in human genetic syndromes associated with craniofacial anomalies, including lacrimal and salivary gland aplasia. Elevated Fgf10 expression is associated with poor prognosis in a range of cancers. In addition to developmental and disease roles, FGF10 regulates homeostasis and repair of diverse adult tissues and has been identified as a target for regenerative medicine.

12.
Genomics ; 115(3): 110630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105387

RESUMO

Orofacial clefts (OFCs) are the most common congenital craniofacial disorders and cause serious problems with the appearance, orofacial function and mental health of the patients. The fibroblast growth factor (FGF) signaling pathway is critical for several aspects of craniofacial development and loss-of-function mutations of coding genes for multiple FGFs and FGFRs can lead to OFCs. We recently characterized FAM3B as a novel ligand of FGF signaling, which, through binding to FGFRs and activating downstream ERK, regulates craniofacial development in Xenopus. In this study, we identify two rare variants in FAM3B (p.Q61R and p.D128G) via target region sequencing of FAM3B on 144 unrelated sporadic patients with non-syndromic OFCs (NSOFCs). Bioinformatic analysis predict that these two variants are likely to be damaging and biochemical experiments show that these two variants weaken the FGF ligand activity of FAM3B by decreasing its expression and thus secretion. In summary, our results indicate that FAM3B is a novel candidate gene for NSOFCs in humans.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Ligantes , Mutação , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Neoplasias/genética , Citocinas/genética
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000154

RESUMO

Putatively, tooth agenesis was attributed to the initiation failure of tooth germs, though little is known about the histological and molecular alterations. To address if constitutively active FGF signaling is associated with tooth agenesis, we activated Fgf8 in dental mesenchyme with Osr-cre knock-in allele in mice (Osr2-creKI; Rosa26R-Fgf8) and found incisor agenesis and molar microdontia. The cell survival assay showed tremendous apoptosis in both the Osr2-creKI; Rosa26R-Fgf8 incisor epithelium and mesenchyme, which initiated incisor regression from cap stage. In situ hybridization displayed vanished Shh transcription, and immunostaining exhibited reduced Runx2 expression and enlarged mesenchymal Lef1 domain in Osr2-creKI; Rosa26R-Fgf8 incisors, both of which were suggested to enhance apoptosis. In contrast, Osr2-creKI; Rosa26R-Fgf8 molar germs displayed mildly suppressed Shh transcription, and the increased expression of Ectodin, Runx2 and Lef1. Although mildly smaller than WT controls prenatally, the Osr2-creKI; Rosa26R-Fgf8 molar germs produced a miniature tooth with impaired mineralization after a 6-week sub-renal culture. Intriguingly, the implanted Osr2-creKI; Rosa26R-Fgf8 molar germs exhibited delayed odontoblast differentiation and accelerated ameloblast maturation. Collectively, the ectopically activated Fgf8 in dental mesenchyme caused incisor agenesis by triggering incisor regression and postnatal molar microdontia. Our findings reported tooth agenesis resulting from the regression from the early bell stage and implicated a correlation between tooth agenesis and microdontia.


Assuntos
Fator 8 de Crescimento de Fibroblasto , Incisivo , Mesoderma , Dente Molar , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Camundongos , Incisivo/anormalidades , Incisivo/metabolismo , Mesoderma/metabolismo , Mesoderma/patologia , Dente Molar/anormalidades , Dente Molar/metabolismo , Anodontia/genética , Anodontia/metabolismo , Anodontia/patologia , Apoptose , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese/genética , Camundongos Transgênicos
14.
Development ; 147(3)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31932350

RESUMO

Nascent myotubes undergo a dramatic morphological transformation during myogenesis, in which the myotubes elongate over several cell diameters and are directed to the correct muscle attachment sites. Although this process of myotube guidance is essential to pattern the musculoskeletal system, the mechanisms that control myotube guidance remain poorly understood. Using transcriptomics, we found that components of the Fibroblast Growth Factor (FGF) signaling pathway were enriched in nascent myotubes in Drosophila embryos. Null mutations in the FGF receptor heartless (htl), or its ligands, caused significant myotube guidance defects. The FGF ligand Pyramus is expressed broadly in the ectoderm, and ectopic Pyramus expression disrupted muscle patterning. Mechanistically, Htl regulates the activity of Rho/Rac GTPases in nascent myotubes and effects changes in the actin cytoskeleton. FGF signals are thus essential regulators of myotube guidance that act through cytoskeletal regulatory proteins to pattern the musculoskeletal system.


Assuntos
Padronização Corporal/genética , Drosophila/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ectoderma/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Ligantes , Masculino , Desenvolvimento Musculoesquelético/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
15.
Development ; 147(2)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31862844

RESUMO

Alveologenesis is an essential developmental process that increases the surface area of the lung through the formation of septal ridges. In the mouse, septation occurs postnatally and is thought to require the alveolar myofibroblast (AMF). Though abundant during alveologenesis, markers for AMFs are minimally detected in the adult. After septation, the alveolar walls thin to allow efficient gas exchange. Both loss of AMFs or retention and differentiation into another cell type during septal thinning have been proposed. Using a novel Fgf18:CreERT2 allele to lineage trace AMFs, we demonstrate that most AMFs are developmentally cleared during alveologenesis. Lung mesenchyme also contains other poorly described cell types, including alveolar lipofibroblasts (ALF). We show that Gli1:CreERT2 marks both AMFs as well as ALFs, and lineage tracing shows that ALFs are retained in adult alveoli while AMFs are lost. We further show that multiple immune cell populations contain lineage-labeled particles, suggesting a phagocytic role in the clearance of AMFs. The demonstration that the AMF lineage is depleted during septal thinning through a phagocytic process provides a mechanism for the clearance of a transient developmental cell population.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Organogênese , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Linhagem da Célula , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miofibroblastos/citologia , Fagocitose , Fatores de Tempo
16.
Cell Biol Toxicol ; 39(3): 1137-1152, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34716527

RESUMO

BACKGROUND: Kdm6b, a specific histone 3 lysine 27 (H3K27) demethylase, has been reported to be implicated in a variety of developmental processes including cell differentiation and cell fate determination and multiple organogenesis. Here, we regulated the transcript level of kdm6bb to study the potential role in controlling the hearing organ development of zebrafish. METHODS: A morpholino antisense oligonucleotide (MO) strategy was used to induce Kdm6b deficiency; immunohistochemical staining and in situ hybridization analysis were conducted to figure out the morphologic alterations and embryonic mechanisms. RESULTS: Kdm6bb is expressed in the primordium and neuromasts at the early stage of zebrafish embryogenesis, suggesting a potential function of Kdm6b in the development of mechanosensory organs. Knockdown of kdm6bb severely influences the cell migration and proliferation in posterior lateral line primordium, abates the number of neuromasts along the trunk, and mRNA-mediated rescue test can partially renew the neuromasts. Loss of kdm6bb might be related to aberrant expressions of chemokine genes encompassing cxcl12a and cxcr4b/cxcr7b in the migrating primordium. Moreover, inhibition of kdm6bb reduces the expression of genes in Fgf signaling pathway, while it increases the axin2 and lef1 expression level of Wnt/ß-catenin signaling during the migrating stage. CONCLUSIONS: Collectively, our results revealed that Kdm6b plays an essential role in guiding the migration of primordium and in regulating the deposition of zebrafish neuromasts by mediating the gene expression of chemokines and Wnt and Fgf signaling pathway. Since histone methylation and demethylation are reversible, targeting Kdm6b may present as a novel therapeutic regimen for hearing disorders.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Histonas/metabolismo , Sistema da Linha Lateral/metabolismo , Proliferação de Células , Desenvolvimento Embrionário/genética , Quimiocinas/metabolismo , Movimento Celular/genética
17.
Proc Natl Acad Sci U S A ; 117(52): 33305-33316, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376218

RESUMO

Ectodermal patterning is required for the establishment of multiple components of the vertebrate body plan. Previous studies have demonstrated that precise combinations of extracellular signals induce distinct ectodermal cell populations, such as the neural crest and the neural plate. Yet, we still lack understanding of how the response to inductive signals is modulated to generate the proper transcriptional output in target cells. Here we show that posttranscriptional attenuation of fibroblast growth factor (FGF) signaling is essential for the establishment of the neural crest territory. We found that neural crest progenitors display elevated expression of DICER, which promotes enhanced maturation of a set of cell-type-specific miRNAs. These miRNAs collectively target components of the FGF signaling pathway, a central player in the process of neural induction in amniotes. Inactivation of this posttranscriptional circuit results in a fate switch, in which neural crest cells are converted into progenitors of the central nervous system. Thus, the posttranscriptional attenuation of signaling systems is a prerequisite for proper segregation of ectodermal cell types. These findings demonstrate how posttranscriptional repression may alter the activity of signaling systems to generate distinct spatial domains of progenitor cells.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Crista Neural/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem da Célula , Embrião de Galinha , Ectoderma/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Crista Neural/citologia , Ribonuclease III/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
Proc Natl Acad Sci U S A ; 117(27): 15712-15723, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561646

RESUMO

The mechanisms used by embryos to pattern tissues across their axes has fascinated developmental biologists since the founding of embryology. Here, using single-cell technology, we interrogate complex patterning defects and define a Hedgehog (Hh)-fibroblast growth factor (FGF) signaling axis required for anterior mesoderm lineage development during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populations, culminating in defects to anterior embryonic structures, including the pharyngeal arches, heart, and anterior somites. Transcriptional profiling of Hh-deficient mesoderm during gastrulation revealed disruptions to both transcriptional patterning of the mesoderm and FGF signaling for mesoderm migration. Mesoderm-specific Fgf4/Fgf8 double-mutants recapitulated anterior mesoderm defects and Hh-dependent GLI transcription factors modulated enhancers at FGF gene loci. Cellular migration defects during gastrulation induced by Hh pathway antagonism were mitigated by the addition of FGF4 protein. These findings implicate a multicomponent signaling hierarchy activated by Hh ligands from the embryonic node and executed by FGF signals in nascent mesoderm to control anterior mesoderm patterning.


Assuntos
Fator 4 de Crescimento de Fibroblastos/genética , Fator 8 de Crescimento de Fibroblasto/genética , Gastrulação/genética , Proteína GLI1 em Dedos de Zinco/genética , Animais , Padronização Corporal/genética , Linhagem da Célula/genética , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/genética , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Transdução de Sinais/genética , Análise de Célula Única , Transcriptoma/genética
19.
Genes Dev ; 29(23): 2463-74, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637527

RESUMO

Fibroblast growth factors (FGFs) are required to specify hepatic fate within the definitive endoderm through activation of the FGF receptors (FGFRs). While the signaling pathways involved in hepatic specification are well understood, the mechanisms through which FGFs induce hepatic character within the endoderm are ill defined. Here we report the identification of genes whose expression is directly regulated by FGFR activity during the transition from endoderm to hepatic progenitor cell. The FGFR immediate early genes that were identified include those encoding transcription factors, growth factors, and signaling molecules. One of these immediate early genes encodes naked cuticle homolog 1 (NKD1), which is a repressor of canonical WNT (wingless-type MMTV integration site) signaling. We show that loss of NKD1 suppresses the formation of hepatic progenitor cells from human induced pluripotent stem cells and that this phenotype can be rescued by using a pharmacological antagonist of canonical WNT signaling. We conclude that FGF specifies hepatic fate at least in large part by inducing expression of NKD1 to transiently suppress the canonical WNT pathway.


Assuntos
Proteínas de Transporte/genética , Diferenciação Celular/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/metabolismo , Endoderma/citologia , Humanos , Fígado/citologia , Fígado/embriologia , Via de Sinalização Wnt/fisiologia
20.
Development ; 146(15)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285353

RESUMO

During Xenopus gastrulation, Wnt and FGF signaling pathways cooperate to induce posterior structures. Wnt target expression around the blastopore falls into two main categories: a horseshoe shape with a dorsal gap, as in Wnt8 expression; or a ring, as in FGF8 expression. Using ChIP-seq, we show, surprisingly, that the FGF signaling mediator Ets2 binds near all Wnt target genes. However, ß-catenin preferentially binds at the promoters of genes with horseshoe patterns, but further from the promoters of genes with ring patterns. Manipulation of FGF or Wnt signaling demonstrated that 'ring' genes are responsive to FGF signaling at the dorsal midline, whereas 'horseshoe' genes are predominantly regulated by Wnt signaling. We suggest that, in the absence of active ß-catenin at the dorsal midline, the DNA-binding protein TCF binds and actively represses gene activity only when close to the promoter. In contrast, genes without functional TCF sites at the promoter may be predominantly regulated by Ets at the dorsal midline and are expressed in a ring. These results suggest recruitment of only short-range repressors to potential Wnt targets in the Xenopus gastrula.


Assuntos
Gástrula/embriologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Fatores de Transcrição TCF/metabolismo , Xenopus laevis/embriologia , Animais , Sítios de Ligação/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Ligação Proteica/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa