Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(25): 11016-11026, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38743591

RESUMO

Dissimilatory iron-reducing bacteria (DIRB) oxidize organic matter or hydrogen and reduce ferric iron to form Fe(II)-bearing minerals, such as magnetite and siderite. However, compared with magnetite, which was extensively studied, the mineralization process and mechanisms of siderite remain unclear. Here, with the combination of advanced electron microscopy and synchrotron-based scanning transmission X-ray microscopy (STXM) approaches, we studied in detail the morphological, structural, and chemical features of biogenic siderite via a growth experiment with Shewanella oneidensis MR-4. Results showed that along with the growth of cells, Fe(II) ions were increasingly released into solution and reacted with CO32- to form micrometer-sized siderite minerals with spindle, rod, peanut, dumbbell, and sphere shapes. They are composed of many single-crystal siderite plates that are fanned out from the center of the particles. Additionally, STXM revealed Fh and organic molecules inside siderite. This suggests that the siderite crystals might assemble around a Fh-organic molecule core and then continue to grow radially. This study illustrates the biomineralization and assembly of siderite by a successive multistep growth process induced by DIRB, also provides evidences that the distinctive shapes and the presence of organic molecules inside might be morphological and chemical features for biogenic siderite.


Assuntos
Ferro , Ferro/metabolismo , Shewanella/metabolismo , Minerais/metabolismo , Minerais/química , Oxirredução , Bactérias/metabolismo , Carbonatos , Compostos Férricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa