Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 842
Filtrar
1.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37295417

RESUMO

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Masculino , Humanos , Microscopia Crioeletrônica , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Microtúbulos/metabolismo , Cauda do Espermatozoide/química , Cauda do Espermatozoide/metabolismo , Proteínas dos Microtúbulos/química , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
2.
Cell ; 185(26): 4986-4998.e12, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563665

RESUMO

Intraflagellar transport (IFT) is the highly conserved process by which proteins are transported along ciliary microtubules by a train-like polymeric assembly of IFT-A and IFT-B complexes. IFT-A is sandwiched between IFT-B and the ciliary membrane, consistent with its putative role in transporting transmembrane and membrane-associated cargoes. Here, we have used single-particle analysis electron cryomicroscopy (cryo-EM) to determine structures of native IFT-A complexes. We show that subcomplex rearrangements enable IFT-A to polymerize laterally on anterograde IFT trains, revealing a cooperative assembly mechanism. Surprisingly, we discover that binding of IFT-A to IFT-B shields the preferred lipid-binding interface from the ciliary membrane but orients an interconnected network of ß-propeller domains with the capacity to accommodate diverse cargoes toward the ciliary membrane. This work provides a mechanistic basis for understanding IFT-train assembly and cargo interactions.


Assuntos
Cílios , Proteínas , Polimerização , Transporte Biológico , Cílios/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Flagelos/metabolismo , Transporte Proteico
3.
Annu Rev Cell Dev Biol ; 38: 103-123, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767872

RESUMO

Cilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, an intraflagellar transport (IFT) system powered by unique kinesin and dynein motors functions to deliver the molecules required to build cilia and maintain their functions. Cryo-electron tomography has helped to reveal the organization of protein complex arrangement along the axoneme and the structure of anterograde IFT trains as well as the structure of primary cilia. Only recently, single-particle analysis (SPA) cryo-electron microscopy has provided molecular details of the protein organization of ciliary components, helping us to understand how they bind to microtubule doublets and how mechanical force propagated by dynein conformational changes is converted into ciliary beating. Here we highlight recent structural advances that are leading to greater knowledge of ciliary function.


Assuntos
Dineínas do Axonema , Cílios , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Transporte Biológico/fisiologia , Biologia , Cílios/metabolismo , Microscopia Crioeletrônica , Flagelos/metabolismo , Cinesinas
4.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929902

RESUMO

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
5.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28426242

RESUMO

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Fímbrias Bacterianas/ultraestrutura , Poro Nuclear/química , Imagem Óptica/métodos , Células Procarióticas/ultraestrutura , Archaea/metabolismo , Archaea/ultraestrutura , Bactérias/metabolismo , Bactérias/ultraestrutura , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica/história , Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/história , Tomografia com Microscopia Eletrônica/instrumentação , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , História do Século XX , História do Século XXI , Modelos Moleculares , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Imagem Óptica/história , Imagem Óptica/instrumentação , Células Procarióticas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
6.
Annu Rev Microbiol ; 76: 349-367, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650667

RESUMO

A huge number of bacterial species are motile by flagella, which allow them to actively move toward favorable environments and away from hazardous areas and to conquer new habitats. The general perception of flagellum-mediated movement and chemotaxis is dominated by the Escherichia coli paradigm, with its peritrichous flagellation and its famous run-and-tumble navigation pattern, which has shaped the view on how bacteria swim and navigate in chemical gradients. However, a significant amount-more likely the majority-of bacterial species exhibit a (bi)polar flagellar localization pattern instead of lateral flagella. Accordingly, these species have evolved very different mechanisms for navigation and chemotaxis. Here, we review the earlier and recent findings on the various modes of motility mediated by polar flagella.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Flagelos , Proteínas de Bactérias , Quimiotaxia/fisiologia , Escherichia coli/genética , Flagelos/fisiologia , Flagelos/ultraestrutura , Flagelina/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 121(22): e2317264121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781211

RESUMO

The phagotrophic flagellates described as "typical excavates" have been hypothesized to be morphologically similar to the Last Eukaryotic Common Ancestor and understanding the functional ecology of excavates may therefore help shed light on the ecology of these early eukaryotes. Typical excavates are characterized by a posterior flagellum equipped with a vane that beats in a ventral groove. Here, we combined flow visualization and observations of prey capture in representatives of the three clades of excavates with computational fluid dynamic modeling, to understand the functional significance of this cell architecture. We record substantial differences amongst species in the orientation of the vane and the beat plane of the posterior flagellum. Clearance rate magnitudes estimated from flow visualization and modeling are both like that of other similarly sized flagellates. The interaction between a vaned flagellum beating in a confinement is modeled to produce a very efficient feeding current at low energy costs, irrespective of the beat plane and vane orientation and of all other morphological variations. Given this predicted uniformity of function, we suggest that the foraging systems of typical excavates studied here may be good proxies to understand those potentially used by our distant ancestors more than 1 billion years ago.


Assuntos
Flagelos , Flagelos/fisiologia , Animais , Eucariotos/fisiologia , Modelos Biológicos , Evolução Biológica , Hidrodinâmica
8.
EMBO J ; 41(20): e104582, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093892

RESUMO

The conserved nine-fold structural symmetry of the centriole is thought to be generated by cooperation between two mechanisms, one dependent on and the other independent of the cartwheel, a sub-centriolar structure consisting of a hub and nine spokes. However, the molecular entity of the cartwheel-independent mechanism has not been elucidated. Here, using Chlamydomonas reinhardtii mutants, we show that Bld10p/Cep135, a conserved centriolar protein that connects cartwheel spokes and triplet microtubules, plays a central role in this mechanism. Using immunoelectron microscopy, we localized hemagglutinin epitopes attached to distinct regions of Bld10p along two lines that connect adjacent triplets. Consistently, conventional and cryo-electron microscopy identified crosslinking structures at the same positions. In centrioles formed in the absence of the cartwheel, truncated Bld10p was found to significantly reduce the inter-triplet distance and frequently form eight-microtubule centrioles. These results suggest that the newly identified crosslinks are comprised of part of Bld10p/Cep135. We propose that Bld10p determines the inter-triplet distance in the centriole and thereby regulates the number of triplets in a cartwheel-independent manner.


Assuntos
Centríolos , Hemaglutininas , Centríolos/genética , Centríolos/metabolismo , Microscopia Crioeletrônica , Epitopos/metabolismo , Hemaglutininas/metabolismo , Microtúbulos/metabolismo
9.
J Cell Sci ; 137(10)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572631

RESUMO

Transition fibres and distal appendages surround the distal end of mature basal bodies and are essential for ciliogenesis, but only a few of the proteins involved have been identified and functionally characterised. Here, through genome-wide analysis, we have identified 30 transition fibre proteins (TFPs) and mapped their arrangement in the flagellated eukaryote Trypanosoma brucei. We discovered that TFPs are recruited to the mature basal body before and after basal body duplication, with differential expression of five TFPs observed at the assembling new flagellum compared to the existing fixed-length old flagellum. RNAi-mediated depletion of 17 TFPs revealed six TFPs that are necessary for ciliogenesis and a further three TFPs that are necessary for normal flagellum length. We identified nine TFPs that had a detectable orthologue in at least one basal body-forming eukaryotic organism outside of the kinetoplastid parasites. Our work has tripled the number of known transition fibre components, demonstrating that transition fibres are complex and dynamic in their composition throughout the cell cycle, which relates to their essential roles in ciliogenesis and flagellum length regulation.


Assuntos
Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sequência Conservada , Corpos Basais/metabolismo , Transporte Proteico , Fatores de Tempo , Flagelos/genética , Flagelos/metabolismo , Regulação da Expressão Gênica , Cílios/genética , Cílios/metabolismo
10.
J Cell Sci ; 137(13)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853670

RESUMO

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.


Assuntos
Chlamydomonas reinhardtii , Cílios , Dineínas , Flagelos , Cinesinas , Proteômica , Cílios/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Proteômica/métodos , Cinesinas/metabolismo , Cinesinas/genética , Dineínas/metabolismo , Flagelos/metabolismo , Transporte Biológico
11.
Proc Natl Acad Sci U S A ; 120(25): e2218951120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307440

RESUMO

We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga Chlamydomonas reinhardtii is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.


Assuntos
Acústica , Natação , Humanos , Som , Cílios , Corpo Celular
12.
Proc Natl Acad Sci U S A ; 120(34): e2301873120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579142

RESUMO

Bacteria navigate natural habitats with a wide range of mechanical properties, from the ocean to the digestive tract and soil, by rotating helical flagella like propellers. Species differ in the number, position, and shape of their flagella, but the adaptive value of these flagellar architectures is unclear. Many species traverse multiple types of environments, such as pathogens inside and outside a host. We investigate the hypothesis that flagellar architectures mediate environment-specific benefits in the marine pathogen Vibrio alginolyticus which exhibits physiological adaptation to the mechanical environment. In addition to its single polar flagellum, the bacterium produces lateral flagella in environments that differ mechanically from water. These are known to facilitate surface motility and attachment. We use high-throughput 3D bacterial tracking to quantify chemotactic performance of both flagellar architectures in three archetypes of mechanical environments relevant to the bacterium's native habitats: water, polymer solutions, and hydrogels. We reveal that lateral flagella impede chemotaxis in water by lowering the swimming speed but improve chemotaxis in both types of complex environments. Statistical trajectory analysis reveals two distinct underlying behavioral mechanisms: In viscous solutions of the polymer PVP K90, lateral flagella increase the swimming speed. In agar hydrogels, lateral flagella improve overall chemotactic performance, despite lowering the swimming speed, by preventing trapping in pores. Our findings show that lateral flagella are multipurpose tools with a wide range of applications beyond surfaces. They implicate flagellar architecture as a mediator of environment-specific benefits and point to a rich space of bacterial navigation behaviors in complex environments.


Assuntos
Quimiotaxia , Vibrio alginolyticus , Vibrio alginolyticus/fisiologia , Adaptação Fisiológica , Flagelos , Hidrogéis , Polímeros
13.
Proc Natl Acad Sci U S A ; 120(22): e2220033120, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37235635

RESUMO

The complex motility of bacteria, ranging from single-swimmer behaviors such as chemotaxis to collective dynamics, including biofilm formation and active matter phenomena, is driven by their microscale propellers. Despite extensive study of swimming flagellated bacteria, the hydrodynamic properties of their helical-shaped propellers have never been directly measured. The primary challenges to directly studying microscale propellers are 1) their small size and fast, correlated motion, 2) the necessity of controlling fluid flow at the microscale, and 3) isolating the influence of a single propeller from a propeller bundle. To solve the outstanding problem of characterizing the hydrodynamic properties of these propellers, we adopt a dual statistical viewpoint that connects to the hydrodynamics through the fluctuation-dissipation theorem (FDT). We regard the propellers as colloidal particles and characterize their Brownian fluctuations, described by 21 diffusion coefficients for translation, rotation, and correlated translation-rotation in a static fluid. To perform this measurement, we applied recent advances in high-resolution oblique plane microscopy to generate high-speed volumetric movies of fluorophore-labeled, freely diffusing Escherichia coli flagella. Analyzing these movies with a bespoke helical single-particle tracking algorithm, we extracted trajectories, calculated the full set of diffusion coefficients, and inferred the average propulsion matrix using a generalized Einstein relation. Our results provide a direct measurement of a microhelix's propulsion matrix and validate proposals that the flagella are highly inefficient propellers, with a maximum propulsion efficiency of less than 3%. Our approach opens broad avenues for studying the motility of particles in complex environments where direct hydrodynamic approaches are not feasible.

14.
Semin Cell Dev Biol ; 137: 3-15, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922809

RESUMO

Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.


Assuntos
Dictyostelium , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Eucariotos/metabolismo
15.
J Biol Chem ; 300(4): 107117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403244

RESUMO

Before preparing for division, bacteria stop their motility. During the exponential growth phase in Escherichia coli, when the rate of bacterial division is highest, the expression of flagellar genes is repressed and bacterial adhesion is enhanced. Hence, it is evident that cell division and motility in bacteria are linked; however, the specific molecular mechanism by which these two processes are linked is not known. While observing E. coli, we found that compared to the WT, the E. coli (Δmin) cells show higher motility and flagellation. We demonstrated that the higher motility was due to the absence of the Min system and can be restored to normal in the presence of Min proteins, where Min system negatively regulates flagella formation. The Min system in E. coli is widely studied for its role in the inhibition of polar Z-ring formation through its pole-to-pole oscillation. However, its role in bacterial motility is not explored. MinD homologs, FlhG and FleN, are known to control flagellar expression through their interaction with FlrA and FleQ, respectively. AtoC, a part of the two-component system AtoSC complex, is homologous to FlrA/FleQ, and the complex is involved in E. coli flagellation via its interaction with the fliA promoter. We have shown that MinD interacts directly with the AtoS of AtoSC complex and controls the fliA expression. Our findings suggest that the Min system acts as a link between cell division and motility in E. coli.


Assuntos
Adenosina Trifosfatases , Divisão Celular , Escherichia coli , Flagelos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Divisão Celular/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Flagelos/metabolismo , Flagelos/genética , Regulação Bacteriana da Expressão Gênica
16.
Mol Microbiol ; 121(5): 954-970, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38458990

RESUMO

The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved ß-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12S also restored the ΔldtR motility defect. The MotAG12S variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12S might stabilize its interaction with altered peptidoglycan.


Assuntos
Flagelos , Regulação Bacteriana da Expressão Gênica , Sinorhizobium meliloti , Fatores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Mutação , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
17.
Mol Microbiol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096095

RESUMO

FliL is a bacterial flagellar protein demonstrated to associate with, and regulate ion flow through, the stator complex in a diverse array of bacterial species. FliL is also implicated in additional functions such as stabilizing the flagellar rod, modulating rotor bias, sensing the surface, and regulating gene expression. How can one protein do so many things? Its location is paramount to understanding its numerous functions. This review will look at the evidence, attempt to resolve some conflicting findings, and offer new thoughts on FliL.

18.
EMBO J ; 40(5): e105781, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368450

RESUMO

The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin-II, the retrograde motor IFT dynein, and the IFT-A and -B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT-B protein IFT54 interacts with both kinesin-II and IFT dynein and regulates anterograde IFT. Deletion of residues 342-356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin-II and this interaction was strengthened for the IFT54Δ342-356 mutant in vitro and in vivo. The deletion of residues 261-275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261-275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas/fisiologia , Cílios/fisiologia , Dineínas/metabolismo , Flagelos/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Algas/genética , Dineínas/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética
19.
Am J Hum Genet ; 109(1): 157-171, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932939

RESUMO

Asthenoteratozoospermia, defined as reduced sperm motility and abnormal sperm morphology, is a disorder with considerable genetic heterogeneity. Although previous studies have identified several asthenoteratozoospermia-associated genes, the etiology remains unknown for the majority of affected men. Here, we performed whole-exome sequencing on 497 unrelated men with asthenoteratozoospermia and identified DNHD1 bi-allelic variants from eight families (1.6%). All detected variants were predicted to be deleterious via multiple bioinformatics tools. Hematoxylin and eosin (H&E) staining revealed that individuals with bi-allelic DNHD1 variants presented striking abnormalities of the flagella; transmission electron microscopy (TEM) further showed flagellar axoneme defects, including central pair microtubule (CP) deficiency and mitochondrial sheath (MS) malformations. In sperm from fertile men, DNHD1 was localized to the entire flagella of the normal sperm; however, it was nearly absent in the flagella of men with bi-allelic DNHD1 variants. Moreover, abundance of the CP markers SPAG6 and SPEF2 was significantly reduced in spermatozoa from men harboring bi-allelic DNHD1 variants. In addition, Dnhd1 knockout male mice (Dnhd1‒/‒) exhibited asthenoteratozoospermia and infertility, a finding consistent with the sperm phenotypes present in human subjects with DNHD1 variants. The female partners of four out of seven men who underwent intracytoplasmic sperm injection therapy subsequently became pregnant. In conclusion, our study showed that bi-allelic DNHD1 variants cause asthenoteratozoospermia, a finding that provides crucial insights into the biological underpinnings of this disorder and should assist with counseling of affected individuals.


Assuntos
Alelos , Astenozoospermia/genética , Axonema/genética , Dineínas/genética , Flagelos/genética , Predisposição Genética para Doença , Mutação , Animais , Astenozoospermia/diagnóstico , Axonema/patologia , Biologia Computacional/métodos , Análise Mutacional de DNA , Modelos Animais de Doenças , Flagelos/patologia , Frequência do Gene , Estudos de Associação Genética , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Linhagem , Fenótipo , Análise do Sêmen , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Sequenciamento do Exoma
20.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752106

RESUMO

Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.


Assuntos
Cílios , Rim Policístico Autossômico Dominante , Humanos , Cílios/metabolismo , Canais de Cátion TRPP/genética , Rim Policístico Autossômico Dominante/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa