Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Small ; 20(15): e2307885, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38161253

RESUMO

For the development of acid-responsive advanced fluorescent films with a 2D nanostructure, a pyridyl cyanostilbene-based AIEgen (PCRM) is newly synthesized. The synthesized PCRM exhibits aggregation-induced emission (AIE) and responds reversibly to acid and base stimuli. To fabricate the nanoporous polymer-stabilized film, PCRM and 4-(octyloxy)benzoic acid (8OB) are complexed in a 1:1 ratio through hydrogen bonding. The PCRM-8OB complex with a smectic mesophase is uniaxially oriented at first and photopolymerized with a crosslinker. By subsequently removing 8OB in an alkaline solution, nanopores are generated in the self-assembled and polymerized hierarchical 2D nanostructure film. The prepared nanoporous fluorescent films exhibit not only the reversible response to acid and base stimuli but also mechanical and chemical robustness. Since the nanoporous fluorescent films have different sensitivities to trifluoroacetic acid (TFA) depending on the molecular orientation in the film, advanced acid vapor sensors that can display the risk level according to the concentration of TFA are demonstrated. Reactive AIEgens-based hierarchical nanostructure films with nanopores fabricated by a subsequent process of self-assembly, polymerization, and etching can open a new door for the development of advanced chemosensors.

2.
Chemistry ; 30(22): e202304268, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38335035

RESUMO

High-quality conjugated microporous polymer (CMP) films with orientation and controlled structure are extremely desired for applications. Here, we report the effective construction of CMP 3D composite films (pZn/PTPCz) with a controlled porosity structure and preferred orientation using the template-assisted electropolymerization (EP) approach for the first time. The structure of pZn/PTPCz composite thin films and nitrophenol sensing performance were thoroughly studied. When compared to the control CMP film made on flat indium tin oxide (ITO) substrates, the as-prepared pZn/PTPCz composite films showed significantly enhanced fluorescent intensity and much better sensing performance for the model explosive. This was attributed to the metal-enhanced fluorescence (MEF) of porous nanostructured zinc (pZn) and the additional macroporosity of the pZn/PTPCz composite films. This work provides a feasible approach for creating oriented 3D CMP-based thin films for advanced applications.

3.
J Fluoresc ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028449

RESUMO

Pentachlorophenol is a very toxic chemical that is used as a pesticide, fungicide, herbicide, wood preservative, etc., and it should be monitored in terms of human health and environmental production. Another environmental problem is the increase in the use of facemasks, especially during the COVID-19 pandemic. This study provides a value added chemicals to sustainability of recycling process. Fluorescent carbon dots (CDs) were synthesized from waste facemasks and investigated their fluorescence sensor performances. UV-Vis and fluorescence spectra of the synthesized carbon dots were recorded in different organic solvents. The sensor properties of these carbon dots against pesticides were investigated, and a 'turn-off' response was observed toward pentachlorophenol. The limit of detection was found 8.5 µM in the linear range from 43.3 µM to 375 µM. This study showed that waste plastics such as facemasks can be recycled to obtain carbon dots, which are used in different technological areas such as photocatalysis, bioimaging, etc., as well as in sensors.

4.
J Fluoresc ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042357

RESUMO

In this study, fluorescent gold nanoclusters (AuNCs) conjugated with pyridoxal-5-phosphate (PLP) were synthesized, characterized, and used for Zn2+ fluorescence turn-on sensing. PLP was conjugated over the surface of papain-stabilized fluorescent gold nanoclusters (pap-AuNCs; λex = 380 nm, λem = 670 nm) by forming imine linkage. Due to this modification, the red color emitting pap-AuNCs changed to orange color emitting nanoclusters PLP_pap-AuNCs. The nano-assembly PLP_pap-AuNCs detect Zn2+ selectively by showing a notable fluorescence enhancement at 477 nm. Zn2+ detection with PLP_pap-AuNCs was quick and easy, with an estimated detection limit of 0.14 µM. Further, paper strips and cotton buds coated with PLP_pap-AuNCs were developed for affordable on-site visual detection of Zn2+. Finally, the detection of Zn2+ in actual environmental water samples served as validation of the usefulness of PLP_pap-AuNCs.

5.
J Fluoresc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865061

RESUMO

In order to design organic small molecule fluorescent materials with multiple sensing, a bibranched -NH2 modified cyanostilbene derivative (AM) was synthesized. It exhibits solvent and aggregation-induced emission effects, with a solid-state quantum yield of 28%, which is seven times higher than that in THF. The synthesized sample AM demonstrated high sensitivity to trace water via a fluorescence "turn-off" response, achieving a low detection limit of 0.41 µM in THF and 0.80 µM in EtOH. AM also exhibits a "turn-off" response to picric acid, attributed to the photo-induced electron transfer effect it induces. The recognition of picric acid by AM demonstrates specificity and resistance to interference from nitro explosives, with a detection limit of 300 ppb and a linear relationship (R2 = 0.9981) at the range of 0-4 equivalents AM. Such acid recognition can facilitate the design of qualitative test papers and safety inks. Additionally, AM can function as a temperature sensor with a linear relationship (R2 = 0.9976) within the temperature range of 25-110 °C. Leveraging these unique characteristics, a series of methods were proposed for the direct quantitative determination of trace water in nonaqueous solvents, picric acid, and temperature.

6.
J Fluoresc ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396147

RESUMO

Gamma rays, as hazardous nuclear radiation, necessitate effective and rapid detection methods. This paper introduces a low-cost, fast, and simple fluorescence method based on CdTe/CdS core/shell quantum dots for gamma-ray detection. CdTe/CdS quantum dots, subjected to gamma irradiation from a 60Co source under various conditions, were investigated to assess their fluorescence sensor capabilities. The obtained results showed that an increase in CdTe/CdS nanoparticle size was associated with decreased sensitivity, while a reduction in CdTe/CdS concentration correlated with increased sensitivity. To further validate the practicality of CdTe/CdS core/shell quantum dots in gamma-ray detection, the structural properties of the quantum dots were meticulously studied. Raman spectroscopy, X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) analysis were conducted before and after gamma-ray radiation. The results demonstrated the crystalline stability of CdTe/CdS core/shell quantum dots under gamma irradiation, highlighting their robust structural integrity. In conclusion, the experimental findings underscore the exceptional potential of CdTe/CdS quantum dots as an off-fluorescence probe for simple, low-cost, fast, and on-site detection of gamma rays. This research contributes to the advancement of efficient and practical methods for gamma-ray sensing in various applications.

7.
J Fluoresc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625574

RESUMO

Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.

8.
J Fluoresc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652358

RESUMO

Herein, an aqueous phase synthesis approach was presented for the fabrication of copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) property, utilizing lipoic acid and NaBH4 as ligands and reducing agent, respectively. The as-synthesized Cu NCs exhibit an average size of 3.0 ± 0.2 nm and demonstrate strong solid-state fluorescence upon excitation with UV light. However, when dissolved in water, no observable fluorescent emission is detected in the aqueous solution of Cu NCs. Remarkably, the addition of Methimazole induced a significant red fluorescence from the aqueous solution of Cu NCs. This unexpected phenomenon can be ascribed to the aggregation of negatively charged Cu NCs caused by electrostatic interaction with positively charged imidazole groups in Methimazole, resulting in enhanced fluorescence through AIE mechanism. Therefore, there exists an excellent linear correlation between the fluorescent intensities of Cu NCs aqueous solution and the concentration of Methimazole within a range of 0.1-1.5 mM with a low limit of detection of 82.2 µM. Importantly, the designed enhanced-fluorescent nanoprobe based on Cu NCs exhibits satisfactory performance in assaying commercially available Methimazole tablets, demonstrating its exceptional sensitivity, reliability, and accuracy.

9.
J Fluoresc ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483693

RESUMO

Design and fabrication of integrated multifunctional probes with intrinsic catalytic and detection abilities is of great importance to simplify the operation in biosensing application with high sensitivity. Herein, dual-emitting lanthanide coordination polymers (Ln-CPs) were facilely prepared by self-assembly of guanine diphosphate (GDP), terephthalic acid (TA), Tb3+ and Cu2+ designated as Tb/Cu-GDP/TA CPs. The doped Cu2+ endowed CPs with obviously enhanced peroxidase mimicking activity compared with free Cu2+. In the presence of H2O2, the probe catalyzed the oxidation of TA generating a new blue fluorescent product, while the fluorescence of Tb3+ decreased simultaneously. Therefore, a new sensitive ratiometric fluorescent sensor for H2O2 has been developed with a good linear range from 0.01 to 300 µM and limit of 1.62 nM. Moreover, the proposed platform could be extended to GSH ratiometric assay in the presence of H2O2, and interestingly, the detection performance could be easily adjusted by adding different concentration of H2O2. This work will facilitate the development of luminescent nanoenzymes based on Ln-CPs to construct the simple ratiomatric sensing platform.

10.
J Fluoresc ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300484

RESUMO

This research introduces a novel fluorescence sensor 'on-off-on' employing nitrogen-doped carbon dots (N-CDs) with an 'on-off-on' mechanism for the selective and sensitive detection of Hg(II) and L-cysteine (L-Cys). N-CDs was synthesized using citric acid as the carbon precursor and urea as the nitrogen source in dimethylformamide (DMF) solvent, resulting in red emissive characteristics under UV light. Comprehensive spectroscopic analyses, including UV-Vis, fluorescence, FT-IR, XRD, XPS, Raman, and Zeta potential techniques, validated the structural and optical characteristics of the synthesized N-CDs. The maximum excitation and emission of N-CDs were observed at 548 and 622 nm, respectively. The quantum yield of N-CDs was calculated to be 16.1%. The fluorescence of N-CDs effectively quenches upon the addition of Hg(II) due to the strong coordination between Hg(II) and the surface functionalities of N-CDs. Conversely, upon the subsequent addition of L-Cys, the fluorescence of N-CDs was restored. This restoration can be attributed to the stronger affinity of the -SH group in L-Cys towards Hg(II) relative to the surface functionalities of N-CDs. This dual-mode response enabled the detection of Hg(II) and L-Cys with impressive detection limits of 15.1 nM and 8.0 nM, respectively. This sensor methodology effectively detects Hg(II) in lake water samples and L-Cys levels in human urine, with a recovery range between 99 and 101%. Furthermore, the N-CDs demonstrated excellent stability, high sensitivity, and selectivity, making them a promising fluorescence on-off-on probe for both environmental monitoring of Hg(II) and clinical diagnostics of L-Cys.

11.
Anal Bioanal Chem ; 416(14): 3433-3445, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679638

RESUMO

When Cu(II) reacts with ascorbic acid (AA) to form Cu(I), Cu(I) can combine with eosin Y (EY) to form ionic associations, resulting in significant fluorescence quenching of the EY. Based on the turn-off of fluorescence in the chemosensor EY, a green reaction is proposed herein for the detection of Cu(II). The novel detection method for Cu(II) demonstrates simplicity, high sensitivity, and excellent selectivity, rendering it suitable for analyzing environmental samples. A static fluorescence quenching mechanism is validated through the Stern-Volmer relationship, and the thermodynamic parameters of the reaction are explored using a van 't Hoff plot. The reaction mechanism is investigated via fluorescence spectra, absorption spectra, and density-functional theory (DFT) calculations. The probe's green nature is confirmed by applying four green analytical chemistry metrics.

12.
Methods ; 219: 127-138, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832896

RESUMO

This manuscript introduces a pyrene-based Schiff base L by reacting pyrenecarboxaldehyde with 2-aminothiazole in equimolar ratio. The ligand L was characterized by various spectral data and single crystal. The water sensing ability of L was examined in different organic solvents. The weakly emissive L in DMSO showed a fluorescence enhancement upon the addition of water. The water-induced fluorescence enhancement of L was occurred due to the combined effect of aggregation-induced emission (AIE) phenomenon and suppression of photo-induced electron transfer (PET) process. Using L, the water in DMSO can be detected down to 0.50 wt% with a quantification limit of 1.52 wt%. The analytical novelty of the developed sensor L was validated by detecting moisture in a variety of raw food products.


Assuntos
Corantes Fluorescentes , Água , Água/química , Corantes Fluorescentes/química , Dimetil Sulfóxido , Bases de Schiff/química , Pirenos/química
13.
Anal Bioanal Chem ; 416(5): 1179-1188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148365

RESUMO

A facile and sensitive fluorescent and colorimetric dual-readout assay for detection of acid phosphatase (ACP) was developed via Ce(III) ions-directed aggregation-induced emission (AIE) of glutathione-protected gold nanoclusters (GSH-AuNCs) and oxidase-mimicking activity of Ce(IV) ions. Free Ce(IV) ions exhibited a strong oxidase-mimetic activity, catalytically oxidizing colorless 3,3',5,5'-tetramethylbenzidine (TMB) into its blue product oxTMB in the presence of dissolved O2, thus triggering a remarkable color reaction detected visually. ACP can hydrolyze L-ascorbic acid-2-phosphate (AAP) with the production of ascorbic acid (AA). The AA is able to reduce Ce(IV) ions to Ce(III) ions, thus quenching the oxidase-mimetic activity of Ce(IV) ions. Meanwhile, Ce(III) ions induce AIE of GSH-AuNCs, resulting in the enhancement of the fluorescence signal of GSH-AuNCs. Both the fluorescent and colorimetric dual-mode analysis platforms exhibit a sensitive response to ACP, providing detection limits as low as 0.101 U/L and 0.200 U/L, respectively. Besides, this fabricated dual-mode detection platform holds the potential for analysis of ACP in human serum samples and screening inhibitors for ACP. With good performance and practicability, this study shows promising application in the convenient and reliable determination of ACP activity.


Assuntos
Fosfatase Ácida , Cério , Humanos , Oxirredutases , Colorimetria/métodos , Íons , Limite de Detecção
14.
Mikrochim Acta ; 191(7): 366, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833071

RESUMO

Aristolochic acids (AAs), which are a group of nitrophenanthrene carboxylic acids formed by Aristolochia plant, have become an increasing serious threat to humans due to their nephrotoxicity and carcinogenicity. Fast and accurate approaches capable of simultaneous sensing of aristolochic acids (I-IV) are vital to avoid intake of such compounds. In this research, the novel ratiometric fluorescence zinc metal-organic framework and its nanowire have been prepared. The two different coordination modes (tetrahedral configuration and twisted triangular bipyramidal configuration) within zinc metal-organic framework lead to the significant double emissions. The ratiometric fluorescence approach based on nanowire provides a broader concentration range (3.00 × 10-7~1.00 × 10-4 M) and lower limit of detection (3.70 × 10-8 M) than that based on zinc metal-organic framework (1.00 × 10-6~1.00 × 10-4 M, 5.91 × 10-7 M). The RSDs of the results are in the range 1.4-3.5% (nanowire). The density functional theory calculations and UV-Vis absorption verify that the sensing mechanism is due to charge transfer and energy transfer. Excellent spiked recoveries for AAs(I-IV) in soil and water support that nanowire is competent to simultaneously detect these targets in real samples, and the proposed approach has potential as a fluorescence sensing platform for the simultaneous detection of AAs (I-IV) in complex systems.


Assuntos
Ácidos Aristolóquicos , Limite de Detecção , Estruturas Metalorgânicas , Nanofios , Ácidos Aristolóquicos/análise , Ácidos Aristolóquicos/química , Estruturas Metalorgânicas/química , Nanofios/química , Zinco/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Medições Luminescentes/métodos , Corantes Fluorescentes/química
15.
Mikrochim Acta ; 191(3): 156, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407632

RESUMO

A magnetic fluorescent molecularly imprinted sensor was successfully prepared and implemented to determine catechol (CT). Fe3O4 nanoparticles were synthesized by the solvothermal technique and mesoporous Fe3O4@SiO2@mSiO2 imprinted carriers were prepared by coating nonporous and mesoporous SiO2 shells on the surface of the Fe3O4 subsequently. The magnetic surface molecularly imprinted fluorescent sensor was created after the magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane to introduce double bonds on the surface of the carries and the polymerization was carried out in the presence of CT and fluorescent monomers. The magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane and double bonds were introduced on the surface of the carriers. After CT binding with the molecularly imprinted polymers (MIPs), the fluorescent intensity of the molecularly imprinted polymers (Ex = 400 nm, Em = 523 nm) increased significantly. The fluorescent intensity ratio (F/F0) of the sensor demonstrated a favorable linear correlation with the concentration of CT between 5 and 50 µM with a detection limit of 0.025 µM. Furthermore, the sensor was successfully applied to determine CT in actual samples with recoveries of 96.4-105% and relative standard deviations were lower than 3.5%. The results indicated that the research of our present work provided an efficient approach for swiftly and accurately determining organic pollutant in water.

16.
Mikrochim Acta ; 191(2): 119, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300297

RESUMO

A ratiometric fluorescence platform was developed based on the cobalt oxyhydroxide (CoOOH) nanosheet-modulated fluorescence response of blue emissive copper nanoclusters (Cu NCs) and yellow emissive o-phenylenediamine (OPD). CoOOH nanosheets showed dual function of strong absorption and oxidation ability, which can effectively quench the blue fluorescence of Cu NCs, with an excitation and emission peak maximum at 390 and 450 nm, respectively , and transfer the OPD into yellow fluorescence products, with an excitation and emission peak maximum at 390 and 560 nm, respectively. Upon introducing butyrylcholinesterase (BChE) and its substrates, CoOOH nanosheets were decomposed into Co2+, and malachite green (MG) showed strong inhibition ability to this  process. This resulted in the obvious difference on the ratio of blue and yellow fluorescence recorded on the system in the presence and absence of MG, which was utilized for the quantitative detection of MG, with a limit of detection of 0.140 µM and a coefficient of variation of 3.5%. The fluorescence ratiometric assay showed excellent detection performances in practical sample analysis.


Assuntos
Butirilcolinesterase , Cobalto , Cobre , Óxidos , Fenilenodiaminas , Animais , Corantes de Rosanilina , Peixes
17.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930821

RESUMO

2,6-pyridine dicarboxylic acid (DPA) is an exceptional biomarker of notorious anthrax spores. Therefore, the rapid, sensitive, and selective quantitative detection of DPA is extremely significant and urgent. This paper reports a Zn(II) metal-organic framework with the formula of {[Zn6(NDA)6(DPBT)3] 2H2O·3DMF}n (MOF-1), which consists of 2,6-naphthalenedicarboxylic acid (2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT), and Zn(II) ions. Structural analysis indicated that MOF-1 is a three-dimensional (3D) network which crystallized in the monoclinic system with the C2/c space group, revealing high pH, solvent, and thermal stability. Luminescence sensing studies demonstrated that MOF-1 had the potential to be a highly selective, sensitive, and recyclable fluorescence sensor for the identification of DPA. Furthermore, fluorescent test paper was made to detect DPA promptly with color changes. The enhancement mechanism was established by the hydrogen-bonding interaction and photoinduced electron transfer transition between MOF-1 and DPA molecules.


Assuntos
Biomarcadores , Estruturas Metalorgânicas , Tiadiazóis , Zinco , Estruturas Metalorgânicas/química , Zinco/química , Zinco/análise , Tiadiazóis/química , Antraz/diagnóstico , Ácidos Picolínicos/química , Ácidos Picolínicos/análise , Bacillus anthracis , Modelos Moleculares
18.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065015

RESUMO

Seven new lanthanide coordination polymers, namely [Ln(cpt)3H2O)]n(Ln = La (1), Pr (2), Sm (3), Eu (4), Gd (5), Dy (6), and Er (7)), which were synthesized under hydrothermal conditions using 4'-(4-(4-carboxyphenyloxy)phenyl)-4,2':6',4'-tripyridine (Hcpt) as the ligand. The crystal structures of these seven complexes were determined using single-crystal X-ray diffraction, and they were found to be isostructural, crystallizing in the triclinic P1- space group. The Ln(III) ions were nine-coordinated with tricapped trigonal prism coordination geometry. The Ln(III) cations were coordinated by carboxylic and pyridine groups from (cpt)- ligands, forming one-dimensional ring-chain structures. Furthermore, the luminescent properties of complexes 1-7 were investigated using fluorescent spectra in the solid state. The fluorescence sensing experiments demonstrated that complex 4 exhibits high selectivity and sensitivity for detecting Co2+, Cu2+ ions, and nitrobenzene. Moreover, complex 3 shows good capability for detecting Cu2+ ions and nitrobenzene. Additionally, the sensing mechanism was also thoroughly examined through theoretical calculations.

19.
Chemistry ; 29(72): e202301747, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37815852

RESUMO

This study reports the design of a donor-acceptor (D-A) molecule with two fluorene units on each side of a benzothiadiazole moiety, which allows multiple intermolecular interactions to compete with one another so as to induce the evolution of the metastable 2D platelets to the stable 2D platelets during the self-assembly of the D-A molecule. Importantly, the living seeded self-assembly of metastable and stable 2D structures with precisely controlled sizes can be conveniently achieved using an appropriate supersaturated level of a solution of the D-A molecule as the seeded growth medium that can temporarily hold the almost-proceeding spontaneous nucleation from competing with the seeded growth. The stable 2D platelets with smaller area sizes exhibit higher sensitivity to gaseous dimethyl sulfide, illustrating that the novel living self-assembly method provides more available functional structures with controlled sizes for practical applications. The key finding of this study is that the new living methodology is separated into two independent processes: the elaborate molecular design for various crystalline structures as seeds and the application of a supersaturated solution with appropriate levels as the growth medium to grow the uniform structures with controlled sizes; this would make convenient and possible the living seeded self-assembly of rich 1D, 2D, and 3D architectures.

20.
J Fluoresc ; 33(3): 911-921, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36520364

RESUMO

Detection of water in organic solvents gained much importance as these solvents have been used as a medium for conducting organic reactions and water was considered as an inhibitor, when it is present in the reaction medium. There are number of methods available to measure the water content in organic solvents, however, such methods are time consuming and expensive. Here, we developed a facile method for detecting water in organic solvents using an inexpensive fluorescent probe - Rhodamine B decorated Graphene oxide (RBGO). The fluorescent probe, RBGO can be conveniently prepared by mixing the rhodamine B (RB) with graphene oxide (GO) in water. However, the probe will function as a sensor for water in the organic solvents through the release of dye upon interaction with the water present in organic solvents. Surprisingly, combination of cucurbit[7]uril (CB[7]) and RBGO increased the sensitivity of this sensor dramatically for the detection of water. This is the first example of water sensor with best detection limit by the involvement of host molecules such as CB[7]. This sensor displayed the low limit of detection (LOD) for organic solvents (LOD: 0.0015% for DMSO, 0.0025% for DMF), through the two-way process such as decomplexation and encapsulation. We presume that the role of CB [7] can be implemented in other similar sensors to enhance the sensitivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa