Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Dis ; 108(3): 658-665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37773329

RESUMO

Gummy stem blight, caused by Didymella bryoniae, is an important disease in watermelon in China. Fluxapyroxad, a new succinate dehydrogenase inhibitor fungicide, shows strong inhibition of the mycelia growth of D. bryoniae. However, its resistance risk in D. bryoniae is unclear. In this research, the sensitivities of 60 D. bryoniae strains to fluxapyroxad were investigated. The average EC50 value and MIC values of 60 D. bryoniae strains against fluxapyroxad were 0.022 ± 0.003 µg/ml and ≤0.1 µg/ml for mycelial growth, respectively. Eight fluxapyroxad-resistant mutants with medium resistance levels were acquired from three wild-type parental strains. The mycelial growth and dry weight of mycelia of most mutants were significantly lower than those of their parental strains. However, four resistant mutants showed a similar phenotype in pathogenicity compared with their parental strains. The above results demonstrated that there was a medium resistance risk for fluxapyroxad in D. bryoniae. The cross-resistance assay showed that there was positive cross-resistance between fluxapyroxad and pydiflumetofen, thifluzamide, and boscalid, but there was no cross-resistance between fluxapyroxad and tebuconazole and mepronil. These results will contribute to evaluating the resistance risk of fluxapyroxad for managing diseases caused by D. bryoniae and further increase our understanding about the mode of action of fluxapyroxad.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Ascomicetos/fisiologia , Amidas
2.
Plant Dis ; 107(9): 2724-2728, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36825320

RESUMO

Fluxapyroxad, a type of succinate dehydrogenase inhibitor fungicide, has been used to control the growth of gray mold on strawberry for more than 5 years in China. Selection for resistance to the causal agent Botrytis cinerea became a threat to the efficacy of fluxapyroxad. In total, 160 B. cinerea isolates collected from Shanghai during 2020 and 2021 were tested for their resistance to fluxapyroxad using mycelial growth inhibition. The results indicated that the curve of baseline sensitivity was unimodal, with an approximately normal distribution and a mean effective concentration of the fungicide that inhibited growth by 50% (EC50) of 0.18 ± 0.01 µg/ml. In total, 27.78 and 48.57% of isolates were resistant to fluxapyroxad in 2020 and 2021, respectively, where the lowest EC50 value of mycelial growth inhibition was 0.03 µg/ml and the highest value was 51.3 µg/ml. Resistance mechanism analysis showed that the succinate dehydrogenase subunit B (SdhB) N230I mutation could lead to resistance and P225F mutation could lead to higher resistance. These data suggest that the resistance frequency of B. cinerea isolates to fluxapyroxad increased in 2021 compared with 2020, which requires appropriate fungicide rotation strategies to be implemented in order to control gray mold on strawberry in the future.


Assuntos
Fragaria , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Succinato Desidrogenase/genética , Farmacorresistência Fúngica/genética , China
3.
Plant Dis ; 107(4): 1035-1043, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36058635

RESUMO

The necrotrophic pathogen Sclerotinia sclerotiorum has a global distribution and a wide host range, making it one of the most damaging and economically important of all plant pathogens. The current study found that fluxapyroxad, a typical succinate dehydrogenase inhibitor fungicide, had a strong inhibitory effect against S. sclerotiorum, with mean effective concentration for 50% inhibition (EC50) values ranging from 0.021 to 0.095 µg/ml. Further investigation of five highly resistant S. sclerotiorum mutants, with EC50 values of 12.37 to 31.36 µg/ml, found that fluxapyroxad resistance was accompanied by a certain cost to fitness. All of the mutants were found to have significantly (P < 0.05) reduced mycelial growth and altered sclerotia production in artificial culture, as well as reduced pathogenicity, compared with wild-type isolates, with one mutant completely losing the capacity to infect detached soybean leaves. Sequence analysis demonstrated that four of the mutants had point mutations leading to amino acid changes in the SsSdhB subunit of the fungicide target protein succinate dehydrogenase. In addition, two of the mutants were also found to have amino acid changes in the predicted sequence of their SsSdhD subunit, while the fifth mutant had no changes in any of its SsSdh sequences, indicating that an alternative mechanism might be responsible for the observed resistance in this mutant. No cross-resistance was found between fluxapyroxad and any of the other fungicides tested, including tebuconazole, prochloraz, dimethachlone, carbendazim, procymidone, pyraclostrobin, boscalid, fluazinam, fludioxonil, and cyprodinil, which indicates that fluxapyroxad has great potential as an alternative method of control for the Sclerotinia stem rot caused by S. sclerotiorum, and which could provide ongoing protection to the soybean fields of China.


Assuntos
Ascomicetos , Fungicidas Industriais , Succinato Desidrogenase/genética , Fungicidas Industriais/farmacologia
4.
Ecotoxicol Environ Saf ; 247: 114259, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334343

RESUMO

Fluxapyroxad, a succinate dehydrogenase inhibitor (SDHI) fungicide, is commercialized worldwide to control a variety of fungal diseases. Growing evidence shows that fluxapyroxad is teratogenic to aquatic organisms. In this study, the influence of fluxapyroxad toward hematopoietic development was evaluated using zebrafish embryos which were exposed to fluxapyroxad (0.03 µM, 0.3 µM and 3 µM) from 3 h post fertilization (hpf) to 3 days post fertilization (dpf). Compared to the control groups, the hemoglobin was ectopic and decreased in response to fluxapyroxad treatment. The transcription levels of genes (hbbe1, hbbe2, and gata1a) involved in erythropoiesis were reduced after exposure to fluxapyroxad. In contrast, the distributions and expression of marker genes for myeloid lineage cells were unaffected by fluxapyroxad exposure. Our data suggested that fluxapyroxad might specifically affect erythropoiesis and hold great promise for the assessment of the toxicity of fluxapyroxad to aquatic organisms.


Assuntos
Eritropoese , Peixe-Zebra , Animais , Eritropoese/genética , Peixe-Zebra/genética , Amidas , Teratogênicos
5.
Pestic Biochem Physiol ; 181: 105018, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082041

RESUMO

Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor that protects crops from fungal diseases, however, it has been identified as toxicants to aquatic organisms. The objective of this study is to investigate the potential toxicity and underlying mechanisms of FLU on aquatic organisms. Herein, by using zebrafish embryos as a model organism, we demonstrated that FLU can cause microphthalmia in zebrafish embryos. The cell density in ganglion cell layer (GCL) is increased after exposure. Compared with the control, differentiation of the cells in ganglion cell layer, inner nuclear layer (INL), and outer nuclear layer (ONL) were severely disrupted in response to FLU treatment. The data show clear evidence that FLU exhibits development toxicity to zebrafish embryos by inducing retinal cell apoptosis, which causes microphthalmia. Our study provides comprehensive understanding to the underlying mechanism of FLU toxicity.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Amidas , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Retina , Proteínas de Peixe-Zebra/genética
6.
Plant Dis ; 106(2): 549-563, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34353127

RESUMO

Apple growers in the Mid-Atlantic region of the U.S.A. have reported increased losses to bitter rot of apple. We tested the hypothesis that this increase is because the Colletotrichum population has developed resistance to commonly used single-mode-of-action (single-MoA) fungicides. We screened 220 Colletotrichum isolates obtained from 38 apple orchards in the Mid-Atlantic region for resistance to 11 fungicides in Fungicide Resistance Action Committee (FRAC) groups 1, 7, 9, 11, 12, and 29. Eleven (5%) of these isolates were resistant to FRAC group 1 with confirmed ß-tubulin E198A mutations, and two (<1%) were also resistant to FRAC group 11 with confirmed cytochrome-b G143A mutations. Such low frequencies of resistant isolates indicate that fungicide resistance is unlikely to be the cause of any regional increase in bitter rot. A subsample of isolates was subsequently tested in vitro for sensitivity to every single-MoA fungicide registered for apple in the Mid-Atlantic U.S.A. (22 fungicides; FRAC groups 1, 3, 7, 9, 11, 12, and 29), and 13 fungicides were tested in field trials. These fungicides varied widely in efficacy both within and between FRAC groups. Comparisons of results from our in vitro tests with results from our field trials and other field trials conducted across the eastern U.S.A. suggested that EC25 values (concentrations that reduce growth by 25%) are better predictors of fungicide efficacy in normal field conditions than EC50 values. We present these results as a guideline for choosing single-MoA fungicides for bitter rot control in the Mid-Atlantic U.S.A.


Assuntos
Colletotrichum , Fungicidas Industriais , Malus , Colletotrichum/genética , Citocromos b , Fungicidas Industriais/farmacologia , Doenças das Plantas
7.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615390

RESUMO

Elaborating on the residual fate of fluxapyroxad and its metabolites based on their nationwide application was vital to protect the human population from their hazardous effects. In this study, a rapid and sensitive analytical method was developed to trace fluxapyroxad and two of its metabolites in peanut matrices using an ultrahigh chromatography method coupled with mass spectrometry (UHPLC−MS/MS) within 3.5 min. The occurrence, pharmacokinetic degradation and terminal magnitudes of fluxapyroxad were reflected in the original deposition of 8.41−38.15 mg/kg, half−lives of 2.5−8.6 d and final concentrations of 0.004−37.38 mg/kg in peanut straw. The total concentrations of fluxapyroxad in peanut straw (0.04−39.28 mg/kg) were significantly higher than those in peanut kernels (<0.001−0.005 mg/kg) and an obvious concentration effect was observed in fresh (0.01−11.56 mg/kg) compared dried peanut straw (0.04−38.97 mg/kg). Fluxapyroxad was demethylated to 3−(difluoromethyl)−N−(3',4',5'−trifluoro[1,1'−biphenyl]−2−yl)−1H−pyrazole−4−carboxamide (M700F008, 0.02−5.69 mg/kg) and further N−glycosylated to 3−(difluoromethyl)−1−(ß−D−glucopyranosyl)−N−(3',4',5'−triflurobipheny−2−yl)−1H−pyrzaole−4−carboxamide (M700F048, 0.04−39.28 mg/kg).The risk quotients of the total fluxapyroxad for the urban groups were significantly higher than those for the rural groups, and were both negatively correlated with the age of the groups, although both acute (ARfD%, 0.006−0.012%) and chronic (ADI%, 0.415−1.289%) risks are acceptable for the human population. The high-potential health risks of fluxapyroxad should be continuously emphasized for susceptible toddlers (1−3 years), especially those residing in urban areas.


Assuntos
Arachis , Espectrometria de Massas em Tandem , Humanos , Arachis/química , Espectrometria de Massas em Tandem/métodos , Amidas/química , China , Produtos Agrícolas , Cromatografia Líquida de Alta Pressão/métodos
8.
Phytopathology ; 111(5): 819-830, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33141650

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are a class of broad-spectrum fungicides used for management of diseases caused by phytopathogenic fungi. In many cases, reduced sensitivity to SDHI fungicides has been correlated with point mutations in the SdhB and SdhC target genes that encode components of the succinate dehydrogenase complex. However, the genetic basis of SDHI fungicide resistance mechanisms has been functionally characterized in very few fungi. Sclerotinia sclerotiorum is a fast-growing and SDHI fungicide-sensitive phytopathogenic fungus that can be conveniently transformed. Given the high amino acid sequence similarity and putative structural similarity of SDHI protein target sites between S. sclerotiorum and other common phytopathogenic ascomycete fungi, we developed an in vitro heterologous expression system that used S. sclerotiorum as a reporter strain. With this system, we were able to demonstrate the function of mutant SdhB or SdhC alleles from several ascomycete fungi in conferring resistance to multiple SDHI fungicides. In total, we successfully validated the function of Sdh alleles that had been previously identified in field isolates of Botrytis cinerea, Blumeriella jaapii, and Clarireedia jacksonii (formerly S. homoeocarpa) in conferring resistance to boscalid, fluopyram, or fluxapyroxad and used site-directed mutagenesis to construct and phenotype a mutant allele that is not yet known to exist in Monilinia fructicola populations. We also examined the functions of these alleles in conferring cross-resistance to more recently introduced SDHIs including inpyrfluxam, pydiflumetofen, and pyraziflumid. The approach developed in this study can be widely applied to interrogate SDHI fungicide resistance mechanisms in other phytopathogenic ascomycetes.


Assuntos
Ascomicetos , Fungicidas Industriais , Ascomicetos/genética , Botrytis , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas , Pirazóis , Succinato Desidrogenase/genética
9.
Plant Dis ; 105(10): 3072-3081, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33673771

RESUMO

Core rot is a major postharvest disease of apple fruit that occurs worldwide and is caused by a complex of fungi. Despite the importance of the disease, little is known about its etiology in Greece. In this study, 325 fungal isolates obtained from fruit with core rot symptoms were identified to the species level using morphological characteristics and phylogenetic analysis. Fungal identification revealed that Alternaria alternata was the major disease agent (57.8% of the isolates), followed by Kalmusia variispora (27.8%), Botrytis cinerea (12%), and Fusarium spp. (3.3%). K. variispora is reported for the first time as an agent of core rot of apple and its pathogenicity was confirmed by artificial inoculation tests. In addition to disease etiology, field experiments were performed at two different orchards for 3 consecutive years (2017 to 2019). Experiments were conducted to determine the effectiveness of several classes of fungicides and the timing of application for control of the disease. Greater efficacy was achieved when fungicides were applied at the petal fall stage (flowers fading BBCH 67), while the most effective fungicides were the succinate dehydrogenase inhibitors fluxapyroxad, fluopyram, adepidyn, and penthiopyrad. The results of this study are expected to contribute to the optimization of disease management and reduce the yield losses caused by core rot pathogens in Greece.


Assuntos
Fungicidas Industriais , Malus , Frutas , Fungicidas Industriais/farmacologia , Grécia , Filogenia , Succinato Desidrogenase/genética , Ácido Succínico
10.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830252

RESUMO

Succinate dehydrogenase inhibitor (SDHI) fungicides are increasingly used in agriculture to combat molds and fungi, two major threats to both food supply and public health. However, the essential requirement for the succinate dehydrogenase (SDH) complex-the molecular target of SDHIs-in energy metabolism for almost all extant eukaryotes and the lack of species specificity of these fungicides raise concerns about their toxicity toward off-target organisms and, more generally, toward the environment. Herein we review the current knowledge on the toxicity toward zebrafish (Brachydanio rerio) of nine commonly used SDHI fungicides: bixafen, boscalid, fluxapyroxad, flutolanil, isoflucypram, isopyrazam, penthiopyrad, sedaxane, and thifluzamide. The results indicate that these SDHIs cause multiple adverse effects in embryos, larvae/juveniles, and/or adults, sometimes at developmentally relevant concentrations. Adverse effects include developmental toxicity, cardiovascular abnormalities, liver and kidney damage, oxidative stress, energy deficits, changes in metabolism, microcephaly, axon growth defects, apoptosis, and transcriptome changes, suggesting that glycometabolism deficit, oxidative stress, and apoptosis are critical in the toxicity of most of these SDHIs. However, other adverse outcome pathways, possibly involving unsuspected molecular targets, are also suggested. Lastly, we note that because of their recent arrival on the market, the number of studies addressing the toxicity of these compounds is still scant, emphasizing the need to further investigate the toxicity of all SDHIs currently used and to identify their adverse effects and associated modes of action, both alone and in combination with other pesticides.


Assuntos
Anormalidades Múltiplas/induzido quimicamente , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Proteínas de Peixes/antagonistas & inibidores , Fungicidas Industriais/toxicidade , Succinato Desidrogenase/antagonistas & inibidores , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Amidas/toxicidade , Anilidas/toxicidade , Animais , Compostos de Bifenilo/toxicidade , Embrião não Mamífero , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Niacinamida/análogos & derivados , Niacinamida/toxicidade , Norbornanos/toxicidade , Pirazóis/toxicidade , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Tiazóis/toxicidade , Tiofenos/toxicidade , Peixe-Zebra
11.
Sci Total Environ ; 912: 168979, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036135

RESUMO

Fluxapyroxad (FX), a succinate dehydrogenase inhibitor fungicide, has been detected in global marine and aquatic organisms. However, as a new pollutant, its biotoxicity and ecological risks to marine aquatic organisms are unclear. The accumulation and elimination processes and toxic effects of FX on Larimichthys crocea (L. crocea) at environmental concentrations were assessed. FX (1.0 µg/L) was rapidly enriched and persisted prolonged in L. crocea muscle and FX is highly toxic to juvenile L. crocea with the 96 h LC50 of 245.0 µg/L. Furthermore, the toxic effects of FX on juvenile L. crocea and adults L. crocea were compared and analyzed. In contrast to those of adult L. crocea, juvenile L. crocea showed a stronger oxidative stress response and rescued liver damage in terms of antioxidant enzyme activity, energy supply, and liver damage to FX. Transcriptomic analysis also showed that drug metabolism was activated. In the adult L. crocea, the disturbance of the energy metabolism, oxidative respiration, TCA cycle, and lipid metabolism genes were firstly found. The results revealed the accumulation and elimination pattern and ecotoxicological hazards of FX to L. crocea, which provided important theoretical basis for the study of environmental risks caused by new pollutants to marine organisms.


Assuntos
Amidas , Perciformes , Transcriptoma , Animais , Antioxidantes/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Estresse Oxidativo , Perciformes/fisiologia
12.
J Hazard Mater ; 476: 135206, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029191

RESUMO

Fluxapyroxad (FX), a typical succinate dehydrogenase inhibitor fungicide, is causing increased global concerns due to its fungicide effects. However, the accumulation and grow toxicity of FX to Litopenaeus vannamei (L. vannamei) is poorly understand. Therefore, the accumulation pattern of FX in L. vannamei was investigated for the first time in environmental concentrations. FX accumulated rapidly in shrimp muscle. Meanwhile, growth inhibition was observed and the mechanism derived by primarily accelerated glycolipid metabolism and reduced glycolipid content. Moreover, exposure to environmental concentrations of FX induced significant growth inhibition and oxidative stress and inhibited oxidative phosphorylation and TCA cycle in L. vannamei. The endocytosis signaling pathway genes were activated, thereby driving growth toxicity. Oxidative phosphorylation and cytosolic gene expression were further rescued in elimination experiments, demonstrating the mechanism of growth toxicity by FX exposure. The results revealed that FX persistently altered the gut microbiome of L. vannamei using gut microbiome sequencing, particularly with increased Garcinia Purple Pseudoalteromonas luteoviolacea for organic pollutant degradation. This study provided new insights into the potential toxicity of FX to marine organisms, emphasizing the need for further investigation and potential regulatory considerations.

13.
EFSA J ; 22(4): e8696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38596570

RESUMO

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant BASF SE submitted two requests to the competent national authority in Spain and Ireland to modify the existing maximum residue levels (MRLs) for the active substance fluxapyroxad in kaki/Japanese persimmons and in cultivated fungi, respectively. The data submitted in support of the requests were found to be sufficient to derive MRL proposals for kaki/Japanese persimmons and cultivated fungi. Adequate analytical methods for enforcement are available to control the residues of fluxapyroxad on the commodities under consideration at the validated LOQ of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the short-term and long-term intake of residues resulting from the use of fluxapyroxad, according to the reported agricultural practices, is unlikely to present a risk to consumer health. The long-term consumer risk assessment is indicative, pending the submission of the confirmatory data requested under the MRL review.

14.
Chemosphere ; 362: 142685, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909862

RESUMO

Carbon nanomaterials rarely exist in isolation in the natural environment, and their combined effects cannot be ignored. Multi-walled carbon nanotubes (MWCNTs) have shown tremendous potential applications in diverse fields, including pollution remediation, biomedicine, energy, and smart agriculture. However, the combined toxicities of MWCNTs and pesticides on non-target organisms, particularly amphibians, are often overlooked. Fluxapyroxad (FLX), a significant succinate dehydrogenase inhibitor fungicide, has been extensively utilized for the protection of food and cash crops and control of fungi. This raises the possibility of coexistence of MWCNTs and FLX. The objective of this study was to explore the individual and combined toxic effects of FLX and MWCNTs on the early life stages of Xenopus laevis. Embryos were exposed to varying concentrations of FLX (0, 5, and 50 µg/L) either alone or in combination with MWCNTs (100 µg/L) for a duration of 17 days. The findings indicated that co-exposure to FLX and MWCNTs worsened the inhibition of growth, liver damage, and dysregulation of enzymatic activity in tadpoles. Liver transcriptomic analysis further revealed that the presence of MWCNTs exacerbated the disturbances in glucose and lipid metabolism caused by FLX. Additionally, the combined exposure groups exhibited amplified alterations in the composition and function of the gut microflora. Our study suggests that it is imperative to pay greater attention to the agricultural applications, management and ecological risks of MWCNTs in the future, considering MWCNTs may significantly enhance the toxicity of FLX.

15.
Toxicology ; 505: 153828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740169

RESUMO

The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 µM fluxapyroxad or 500 µM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid ß-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 µM fluxapyroxad or 500 µM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 µM fluxapyroxad or 500 µM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.


Assuntos
Receptor Constitutivo de Androstano , Fungicidas Industriais , Hepatócitos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares , Animais , Masculino , Feminino , Ratos , Fungicidas Industriais/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Relação Dose-Resposta a Droga , Tamanho do Órgão/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Replicação do DNA/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
16.
J Fungi (Basel) ; 9(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36836335

RESUMO

Fungicide applications constitute a management practice that reduces the size of fungal populations and by acting as a genetic drift factor, may affect pathogen evolution. In a previous study, we showed that the farming system influenced the population structure of the Aspergillus section Nigri species in Greek vineyards. The current study aimed to test the hypothesis that the differences in the population structure may be associated with the selection of fungicide-resistant strains within the black aspergilli populations. To achieve this, we determined the sensitivity of 102, 151, 19, and 22 for the A. uvarum, A. tubingensis, A. niger, and A. carbonarious isolates, respectively, originating either from conventionally-treated or organic vineyards to the fungicides fluxapyroxad-SDHIs, pyraclostrobin-QoIs, tebuconazole-DMIs, and fludioxonil-phenylpyrroles. The results showed widespread resistance to all four fungicides tested in the A. uvarum isolates originating mostly from conventional vineyards. In contrast, all the A. tubingensis isolates tested were sensitive to pyraclostrobin, while moderate frequencies of only lowly resistant isolates were identified for tebuconazole, fludioxonil, and fluxapyroxad. Sequencing analysis of the corresponding fungicide target encoding genes revealed the presence of H270Y, H65Q/S66P, and G143A mutations in the sdhB, sdhD, and cytb genes of A. uvarum resistant isolates, respectively. No mutations in the Cyp51A and Cyp51B genes were detected in either the A. uvarum or A. tubingensis isolates exhibiting high or low resistance levels to DMIs, suggesting that other resistance mechanisms are responsible for the observed phenotype. Our results support the initial hypothesis for the contribution of fungicide resistance in the black aspergilli population structure in conventional and organic vineyards, while this is the first report of A. uvarum resistance to SDHIs and the first documentation of H270Y or H65Q/S66P mutations in sdhB, sdhD, and of the G143A mutation in the cytb gene of this fungal species.

17.
Food Chem ; 423: 136384, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201257

RESUMO

Understanding the residue fate of fluxapyroxad is critical for food safety and human health. The present study profiled the dissipation, metabolism, accumulation, removal and risk assessment of fluxapyroxad in cucumbers and cowpeas from field to table. Greenhouse-field trials suggested that fluxapyroxad dissipated faster in cucumbers than in cowpeas, and M700F008 was the only detected metabolite at

Assuntos
Cucumis sativus , Verduras , Vigna , Vigna/química , Vigna/metabolismo , Cucumis sativus/química , Cucumis sativus/metabolismo , Verduras/química , Verduras/metabolismo , Medição de Risco
18.
Environ Pollut ; 332: 121710, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137408

RESUMO

Fungicides are one of significant contributing factors to the rapid decline of amphibian species worldwide. Fluxapyroxad (FLX), an effective and broad-spectrum succinate dehydrogenase inhibitor fungicide, has attracted major concerns due to its long-lasting in the environment. However, the potential toxicity of FLX in the development of amphibians remains mostly unknown. In this research, the potential toxic effects and mechanisms of FLX on Xenopus laevis were investigated. In the acute toxicity test, the 96 h median lethal concentration (LC50) of FLX in X. laevis tadpoles was 1.645 mg/L. Based on the acute toxicity result, tadpoles at the stage 51 were exposed to 0, 0.00822, 0.0822, and 0.822 mg/L FLX during 21 days. Results demonstrated that FLX exposure led to an apparent delay in the growth and development of tadpoles and associated with severe liver injury. Additionally, FLX induced glycogen depletion and lipid accumulation in the liver of X. laevis. The biochemical analysis of plasma and liver indicated that FLX exposure could perturb liver glucose and lipid homeostasis by altering enzyme activity related to glycolysis, gluconeogenesis, fatty acid synthesis, and oxidation. Consistent with the biochemical result, FLX exposure altered the liver transcriptome profile, and the enrichment analysis of differential expression genes highlighted the adverse effects of FLX exposure on steroid biosynthesis, PPAR signaling pathway, glycolysis/gluconeogenesis, and fatty acid metabolism in the tadpole liver. Overall, our study was the first to reveal that sub-lethal concentrations of FLX could induce liver damage and produce obvious interference effects on carbohydrate and lipid metabolism of Xenopus, providing new insight into the potential chronic hazards of FLX for amphibians.


Assuntos
Glucose , Metabolismo dos Lipídeos , Animais , Xenopus laevis/metabolismo , Glucose/metabolismo , Lipídeos , Ácidos Graxos/metabolismo , Larva
19.
Pathogens ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839468

RESUMO

The culture media recommended for the isolation and enumeration of the Fusarium spp. lack selectivity for Fusarium graminearum. Five fungicides-Amistar® (250 g·L-1 azoxystrobin), Filan® (500 g·kg-1 boscalid), Comet® 200 (200 g·L-1 pyraclostrobin), Imtrex® (62.5 g·L-1 fluxapyroxad), Poraz® (450 g·L-1 prochloraz)-were investigated for their potential as selective inhibitors in culture media for the isolation of F. graminearum from soil and plant material. Based on the screening, fluxapyroxad was further tested for selective inhibition for the isolation of F. graminearum from soil. Additionally, selective media were compared for the isolation of F. graminearum from plant material. The fungicides tested did not prove to be effective inhibitors for the development of selective media. For the detection of F. graminearum in plant material, Czapek Dox propiconazole dichloran agar was found to be a better medium than Komada's media, as the former resulted in colonies with darker pigmentation over a shorter incubation time and appeared to have a less inhibitory effect on F. graminearum growth.

20.
Pest Manag Sci ; 79(9): 3300-3311, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103894

RESUMO

BACKGROUND: Net blotch (NB), caused by Pyrenophora teres f. teres (Ptt), is an important disease of barley worldwide. NB control is commonly achieved through the use of fungicide mixtures including strobilurins, triazoles and carboxamides. Succinate dehydrogenase inhibitors (SDHI) are important components of fungicide management programs of barley diseases. However, during the last growing seasons in Argentina, barley fields sprayed with mixtures containing SDHI fungicides have shown failures in NB control. Here, we report the isolation and characterization of Argentine Ptt strains resistant to SDHI fungicides. RESULTS: Compared against a sensitive (wild-type) reference strain collected in 2008, all 21 Ptt isolates collected in 2021 exhibited resistance to pydiflumetofen and fluxapyroxad both in vitro and in vivo. Concordantly, all of them presented target-site mutations in any of the sdhB, sdhC and sdhD genes. Although the mutations detected have been previously reported in other parts of the world, this study documents for the first time the occurrence of double mutations in the same Ptt isolate. Specifically, the double mutation sdhC-N75S + sdhD-D145G confers high resistance to SDHI fungicides, while the double mutations sdhB-H277Y + sdhC-N75S and sdhB-H277Y + sdhC-H134R confer moderate levels of resistance in Ptt. CONCLUSIONS: SDHI-resistance in Argentine Ptt populations is expected to increase. These findings emphasize the urgent need to perform a wider survey and a more frequent monitoring of SDHI sensitivity of Ptt populations and to develop and implement effective antiresistance tactics. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Succinato Desidrogenase/genética , Farmacorresistência Fúngica/genética , Doenças das Plantas , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa