RESUMO
Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.
Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , CalibragemRESUMO
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezerscan thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding.
Assuntos
DNA , Mecanotransdução Celular , DNA/química , Fenômenos MagnéticosRESUMO
Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR's G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the "open" portion of bR's photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR's open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.
Assuntos
Bacteriorodopsinas , Bacteriorodopsinas/metabolismo , Ligantes , Análise Espectral , Retina/metabolismo , Conformação Molecular , Conformação ProteicaRESUMO
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Assuntos
Temperatura Baixa , Conformação de Ácido Nucleico , Transição de Fase , RNA , RNA/química , Dobramento de RNA , Pareamento de Bases , Estabilidade de RNA , Termodinâmica , Água/químicaRESUMO
CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.
Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem CelularRESUMO
Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.
Assuntos
Celulase , Clostridium thermocellum , Acústica , Proteínas de Bactérias/metabolismo , Carboidratos/química , Celulase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/metabolismo , Análise Espectral , AçúcaresRESUMO
We used single-molecule picometer-resolution nanopore tweezers (SPRNT) to resolve the millisecond single-nucleotide steps of superfamily 1 helicase PcrA as it translocates on, or unwinds, several kilobase-long DNA molecules. We recorded more than two million enzyme steps under various assisting and opposing forces in diverse adenosine tri- and diphosphate conditions to comprehensively explore the mechanochemistry of PcrA motion. Forces applied in SPRNT mimic forces and physical barriers PcrA experiences in vivo, such as when the helicase encounters bound proteins or duplex DNA. We show how PcrA's kinetics change with such stimuli. SPRNT allows for direct association of the underlying DNA sequence with observed enzyme kinetics. Our data reveal that the underlying DNA sequence passing through the helicase strongly influences the kinetics during translocation and unwinding. Surprisingly, unwinding kinetics are not solely dominated by the base pairs being unwound. Instead, the sequence of the single-stranded DNA on which the PcrA walks determines much of the kinetics of unwinding.
Assuntos
DNA Helicases , Nucleotídeos , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples , CinéticaRESUMO
SignificanceIn the dynamic environment of the airways, where SARS-CoV-2 infections are initiated by binding to human host receptor ACE2, mechanical stability of the viral attachment is a crucial fitness advantage. Using single-molecule force spectroscopy techniques, we mimic the effect of coughing and sneezing, thereby testing the force stability of SARS-CoV-2 RBD:ACE2 interaction under physiological conditions. Our results reveal a higher force stability of SARS-CoV-2 binding to ACE2 compared to SARS-CoV-1, causing a possible fitness advantage. Our assay is sensitive to blocking agents preventing RBD:ACE2 bond formation. It will thus provide a powerful approach to investigate the modes of action of neutralizing antibodies and other agents designed to block RBD binding to ACE2 that are currently developed as potential COVID-19 therapeutics.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/química , COVID-19/diagnóstico , Suscetibilidade a Doenças , Humanos , Ligação ProteicaRESUMO
To date, studies on the thermodynamic and kinetic processes that underlie biological function and nanomachine actuation in biological- and biology-inspired molecular constructs have primarily focused on photothermal heating of ensemble systems, highlighting the need for probes that are localized within the molecular construct and capable of resolving single-molecule response. Here we present an experimental demonstration of wavelength-selective, localized heating at the single-molecule level using the surface plasmon resonance of a 15 nm gold nanoparticle (AuNP). Our approach is compatible with force-spectroscopy measurements and can be applied to studies of the single-molecule thermodynamic properties of DNA origami nanomachines as well as biomolecular complexes. We further demonstrate wavelength selectivity and establish the temperature dependence of the reaction coordinate for base-pair disruption in the shear-rupture geometry, demonstrating the utility and flexibility of this approach for both fundamental studies of local (nanometer-scale) temperature gradients and rapid and multiplexed nanomachine actuation.
Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Pinças Ópticas , Calefação , Nanopartículas Metálicas/química , DNA/químicaRESUMO
Mechanical forces are essential for life activities, and the mechanical phenotypes of single cells are increasingly gaining attention. Atomic force microscopy (AFM) has been a standard method for single-cell nanomechanical assays, but its efficiency is limited due to its reliance on manual operation. Here, we present a study of deep learning image recognition-assisted AFM that enables automated high-throughput single-cell nanomechanical measurements. On the basis of the label-free identification of the cell structures and the AFM probe in optical bright-field images as well as the consequent automated movement of the sample stage and AFM probe, the AFM probe tip could be accurately and sequentially moved onto the specific parts of individual living cells to perform a single-cell indentation assay or single-cell force spectroscopy in a time-efficient manner. The study illustrates a promising method based on deep learning for achieving operator-independent high-throughput AFM single-cell nanomechanics, which will benefit the application of AFM in mechanobiology.
Assuntos
Aprendizado Profundo , Microscopia de Força Atômica , Análise de Célula Única , Microscopia de Força Atômica/métodos , Análise de Célula Única/métodos , Humanos , Nanotecnologia/métodos , Ensaios de Triagem em Larga Escala/métodosRESUMO
Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qß were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.
Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/química , Capsídeo/química , Maleimidas/análiseRESUMO
Phagocytosis is an essential mechanism of the human immune system where pathogens are eliminated by immune cells. The CCN1 protein plays an important role in the phagocytosis of Staphylococcus aureus by favoring the bridging of the αVß3 integrin to the bacterial peptidoglycan (PG), through mechanical forces that remain unknown. Here, we employ single-molecule experiments to unravel the nanomechanics of the PG-CCN1-αVß3 ternary complex. While CCN1 binds αVß3 integrins with moderate force (â¼60 pN), much higher binding strengths (up to â¼800 pN) are observed between CCN1 and PG. Notably, the strength of both CCN1-αVß3 and CCN1-PG bonds is dramatically enhanced by tensile loading, favoring a model in which mechanical stress induces the exposure of cryptic integrin binding sites in CCN1 and multivalent binding between CCN1 lectin sites and monosaccharides along the PG glycan chains.
Assuntos
Proteína Rica em Cisteína 61 , Integrina alfaVbeta3 , Fagocitose , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Humanos , Proteína Rica em Cisteína 61/metabolismo , Proteína Rica em Cisteína 61/química , Integrina alfaVbeta3/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Ligação Proteica , Sítios de LigaçãoRESUMO
Cadherins are calcium dependent adhesion proteins that establish and maintain the intercellular mechanical contact by bridging the gap between adjacent cells. Desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) are tissue specific cadherin isoforms of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene and in the DSC2-gene are related to arrhythmogenic right ventricular cardiomyopathy (ARVC) a rare but severe heart muscle disease. Here, several possible homophilic and heterophilic binding interactions of wild-type Dsg2, wild-type Dsc2, as well as one Dsg2- and two Dsc2-variants, each associated with ARVC, are investigated. Using single molecule force spectroscopy (SMFS) with atomic force microscopy (AFM) and applying Jarzynski's equality the kinetics and thermodynamics of Dsg2/Dsc2 interaction can be determined. The free energy landscape of Dsg2/Dsc2 dimerization exposes a high activation energy barrier, which is in line with the proposed strand-swapping binding motif. Although the binding motif is not affected by any of the mutations, the binding kinetics of the interactions differ significantly from the wild-type. While wild-type cadherins exhibit an average complex lifetime of approx. 0.3 s interactions involving a variant consistently show - lifetimes that are substantially larger. The lifetimes of the wild-type interactions give rise to the picture of a dynamic adhesion interface consisting of continuously dissociating and (re)associating molecular bonds, while the delayed binding kinetics of interactions involving an ARVC-associated variant might be part of the pathogenesis. Our data provide a comprehensive and consistent thermodynamic and kinetic description of cardiac cadherin binding, allowing detailed insight into the molecular mechanisms of cell adhesion.
Assuntos
Displasia Arritmogênica Ventricular Direita , Caderinas , Desmocolinas , Desmogleína 2 , Desmossomos , Ligação Proteica , Desmossomos/metabolismo , Humanos , Cinética , Desmogleína 2/metabolismo , Desmogleína 2/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Desmocolinas/metabolismo , Desmocolinas/genética , Caderinas/metabolismo , Caderinas/genética , Mutação , Microscopia de Força Atômica , TermodinâmicaRESUMO
Biomolecular interactions are at the base of all physical processes within living organisms; the study of these interactions has led to the development of a plethora of different methods. Among these, single-molecule (in singulo) experiments have become relevant in recent years because these studies can give insight into mechanisms and interactions that are hidden for ensemble-based (in multiplo) methods. The focus of this review is on optical tweezer (OT) experiments, which can be used to apply and measure mechanical forces in molecular systems. OTs are based on optical trapping, where a laser is used to exert a force on a dielectric bead; and optically trap the bead at a controllable position in all three dimensions. Different experimental approaches have been developed to study proteinprotein interactions using OTs, such as: (1) refolding and unfolding in trans interaction where one protein is tethered between the beads and the other protein is in the solution; (2) constant force in cis interaction where each protein is bound to a bead, and the tension is suddenly increased. The interaction may break after some time, giving information about the lifetime of the binding at that tension. And (3) force ramp in cis interaction where each protein is attached to a bead and a ramp force is applied until the interaction breaks. With these experiments, parameters such as kinetic constants (koff, kon), affinity values (KD), energy to the transition state ΔG≠, distance to the transition state Δx≠ can be obtained. These parameters characterize the energy landscape of the interaction. Some parameters such as distance to the transition state can only be obtained from force spectroscopy experiments such as those described here.
Assuntos
Pinças Ópticas , Proteínas , Fenômenos Biofísicos , Comunicação Celular , Cinética , Proteínas/químicaRESUMO
The advent of single-molecule force spectroscopy represents the introduction of forces, torques, and displacements as controlled variables in biochemistry. These methods afford the direct manipulation of individual molecules to interrogate the forces that hold together their structure, the forces and torques that these molecules generate in the course of their biochemical reactions, and the use of force, torque, and displacement as tools to investigate the mechanisms of these reactions. Because of their microscopic nature, the signals detected in these experiments are often dominated by fluctuations, which, in turn, play an important role in the mechanisms that underlie the operation of the molecular machines of the cell. Their direct observation and quantification in single-molecule experiments provide a unique window to investigate those mechanisms, as well as a convenient way to investigate fundamental new fluctuation theorems of statistical mechanics that bridge the equilibrium and non-equilibrium realms of this discipline. In this review we have concentrated on the developments that occurred in our laboratory on the characterization of biopolymers and of molecular machines of the central dogma. Accordingly, some important areas like the study of cytoskeletal motors have not been included. While we adopt at times an anecdotal perspective with the hope of conveying the personal circumstances in which these developments took place, we have made every effort, nonetheless, to include the most important developments that were taking place at the same time in other laboratories.
Assuntos
Polímeros , Imagem Individual de Molécula , Biofísica , Fenômenos Mecânicos , Imagem Individual de Molécula/métodos , Análise EspectralRESUMO
Force and torque spectroscopy have provided unprecedented insights into the mechanical properties, conformational transitions, and dynamics of DNA and DNA-protein complexes, notably nucleosomes. Reliable single-molecule manipulation measurements require, however, specific and stable attachment chemistries to tether the molecules of interest. Here, we present a functionalization strategy for DNA that enables high-yield production of constructs for torsionally constrained and very stable attachment. The method is based on two subsequent PCRs: first â¼380 bp long DNA strands are generated that contain multiple labels, which are used as "megaprimers" in a second PCR to generate â¼kbp long double-stranded DNA constructs with multiple labels at the respective ends. To achieve high-force stability, we use dibenzocyclooctyne-based click chemistry for covalent attachment to the surface and biotin-streptavidin coupling to the bead. The resulting tethers are torsionally constrained and extremely stable under load, with an average lifetime of 70 ± 3 h at 45 pN. The high yield of the approach enables nucleosome reconstitution by salt dialysis on the functionalized DNA, and we demonstrate proof-of-concept measurements on nucleosome assembly statistics and inner turn unwrapping under force. We anticipate that our approach will facilitate a range of studies of DNA interactions and nucleoprotein complexes under forces and torques.
Assuntos
DNA , Nucleossomos , DNA/química , Fenômenos Mecânicos , Fenômenos Biofísicos , Reação em Cadeia da PolimeraseRESUMO
Ribosome translocation catalyzed by elongation factor G (EF-G) is a critical step in protein synthesis where the ribosome typically moves along the mRNA by three nucleotides at each step. To investigate the mechanism of EF-G catalysis, it is essential to precisely resolve the ribosome motion at both ends of the mRNA, which, to our best knowledge, is only achieved with the magnetic-based force spectroscopy developed by our groups. Here, we introduce a novel multiplexed force spectroscopy technique that, for the first time, offers single-nucleotide resolution for multiple samples. This technique combines multiple acoustic force generators with the smallest atomic magnetometer designed for biological research. Utilizing this technique, we demonstrate that mutating EF-G at the GTP binding pocket results in the ribosome moving only two nucleotides on both ends of the mRNA, thereby compromising ribosome translocation. This finding suggests a direct link between GTP hydrolysis and ribosome translocation. Our results not only provide mechanistic insights into the role of GTP binding pocket but also illuminate how allosteric mutations can manipulate translocation. We anticipate broader applications of our technique in the ribosome field, leveraging its high efficiency and single-nucleotide resolution.
Assuntos
Mutação , Fator G para Elongação de Peptídeos , Ribossomos , Ribossomos/metabolismo , Ribossomos/genética , Fator G para Elongação de Peptídeos/metabolismo , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Regulação Alostérica , Domínios ProteicosRESUMO
The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear. Using a bead aggregation assay (BAA), we found that zinc ions increase the dimerization of both subdomains, while copper promotes only dimerization of the E1 domain. In line with this, scanning force spectroscopy (SFS) analysis revealed an increase in APP adhesion force up to three-fold for copper and zinc. Interestingly, however, copper did not alter the separation length of APP dimers, whereas high zinc concentrations caused alterations in the structural features and a decrease of separation length. Together, our data provide clear differences in copper and zinc mediated APP trans-dimerization and indicate that zinc binding might favor a less flexible APP structure. This fact is of significant interest since changes in zinc and copper ion homeostasis are observed in Alzheimer's disease (AD) and were reported to affect synaptic plasticity. Thus, modulation of APP trans-dimerization by copper and zinc could contribute to early synaptic instability in AD.
RESUMO
Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000â pN, at a loading rate of 3×104â pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.
RESUMO
BACKGROUND: Dengue virus (DENV) causes the most significant mosquito-borne viral disease with a wide spectrum of clinical manifestation, including neurological symptoms associated with lethal dengue diseases. Dopamine receptors are expressed in central nervous system, and dopamine antagonists have been reported to exhibit antiviral activity against DENV infection in vivo and in vitro. Although identification of host-cell receptor is critical to understand dengue neuropathogenesis and neurotropism, the involvement of dopamine receptors in DENV infection remains unclear. RESULTS: We exploited the sensitivity and precision of force spectroscopy to address whether dopamine type-2 receptors (D2R) directly interact with DENV particles at the first step of infection. Using optical tweezers, we quantified and characterized DENV binding to D2R expressed on Chinese hamster ovary (CHO) cells. Our finding suggested that the binding was D2R- and DENV-dependent, and that the binding force was in the range of 50-60 pN. We showed that dopamine antagonists prochlorperazine (PCZ) and trifluoperazine (TFP), previously reported to inhibit dengue infection, interrupt the DENV-D2R specific binding. CONCLUSIONS: This study demonstrates that D2R could specifically recognize DENV particles and function as an attachment factor on cell surfaces for DENV. We propose D2R as a host receptor for DENV and as a potential therapeutic target for anti-DENV drugs.