Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2211896120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652471

RESUMO

Fluorescence correlation spectroscopy is a versatile tool for studying fast conformational changes of biomolecules especially when combined with Förster resonance energy transfer (FRET). Despite the many methods available for identifying structural dynamics in FRET experiments, the determination of the forward and backward transition rate constants and thereby also the equilibrium constant is difficult when two intensity levels are involved. Here, we combine intensity correlation analysis with fluorescence lifetime information by including only a subset of photons in the autocorrelation analysis based on their arrival time with respect to the excitation pulse (microtime). By fitting the correlation amplitude as a function of microtime gate, the transition rate constants from two fluorescence-intensity level systems and the corresponding equilibrium constants are obtained. This shrinking-gate fluorescence correlation spectroscopy (sg-FCS) approach is demonstrated using simulations and with a DNA origami-based model system in experiments on immobilized and freely diffusing molecules. We further show that sg-FCS can distinguish photophysics from dynamic intensity changes even if a dark quencher, in this case graphene, is involved. Finally, we unravel the mechanism of a FRET-based membrane charge sensor indicating the broad potential of the method. With sg-FCS, we present an algorithm that does not require prior knowledge and is therefore easily implemented when an autocorrelation analysis is carried out on time-correlated single-photon data.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fótons , Espectrometria de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Biológicos
2.
Chromosoma ; 133(1): 5-14, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265456

RESUMO

Genome sequencing has identified hundreds of histone post-translational modifications (PTMs) that define an open or compact chromatin nanostructure at the level of nucleosome proximity, and therefore serve as activators or repressors of gene expression. Direct observation of this epigenetic mode of transcriptional regulation in an intact single nucleus, is however, a complex task. This is because despite the development of fluorescent probes that enable observation of specific histone PTMs and chromatin density, the changes in nucleosome proximity regulating gene expression occur on a spatial scale well below the diffraction limit of optical microscopy. In recent work, to address this research gap, we demonstrated that the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between fluorescently labelled histones core to the nucleosome, is a readout of chromatin nanostructure that can be multiplexed with immunofluorescence (IF) against specific histone PTMs. Here from application of this methodology to gold standard gene activators (H3K4Me3 and H3K9Ac) versus repressors (e.g., H3K9Me3 and H3K27Me), we find that while on average these histone marks do impart an open versus compact chromatin nanostructure, at the level of single chromatin foci, there is significant spatial heterogeneity. Collectively this study illustrates the importance of studying the epigenetic landscape as a function of space within intact nuclear architecture and opens the door for the study of chromatin foci sub-populations defined by combinations of histone marks, as is seen in the context of bivalent chromatin.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , Nucleossomos , Transferência Ressonante de Energia de Fluorescência , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Epigênese Genética
3.
Exp Cell Res ; : 114166, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029572

RESUMO

Given the importance of aberrant protein-protein interactions (PPIs) in disease, the recent drug discovery focuses on targeting the altered PPIs to treat the disease. In this context, identifying the atypical PPIs underlying the disease is critical for the development of diagnostics and therapeutics. Various biochemical, biophysical, and genetic methods have been reported to study PPIs. Here, we are giving a short account of those techniques with more emphasis on Forster resonance energy transfer (FRET), which can be used to monitor macromolecular interactions in live cells. Besides the basics of FRET, we explain the modifications of its application, like Single molecule FRET (smFRET), Fluorescence Lifetime Imaging Microscopy- FRET (FLIM-FRET), and photoswitching FRET. While smFRET is extensively used for evaluating the biology of nucleic acids and also to develop diagnostics, FLIM-FRET is widely exploited to study the PPIs underlying neurological disorders and cancer. Photoswitching FRET is a relatively newer technique and it has tremendous potential to unravel the significance of different PPIs. Besides these modifications, there are several advancements in the field by introducing new fluorophores. Identification of lanthanide chelates, quantum dots, and other nanoparticle fluorophores has revolutionized the applications of FRET in diagnostics and basic biology. Yet, these methods can be employed to study the interactions of only two molecules. Since the majority of the PPIs are multimeric complexes, we still need to improve our technologies to study these interactions in live cells in real-time.

4.
Small ; 20(21): e2308783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105423

RESUMO

The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).

5.
J Mol Recognit ; 37(4): e3084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38596890

RESUMO

The binding of drugs to plasma proteins determines its fate within the physiological system, hence profound understanding of its interaction within the bloodstream is important to understand its pharmacodynamics and pharmacokinetics and thereby its therapeutic potential. In this regard, our work delineates the mechanism of interaction of Selumetinib (SEL), a potent anti-cancer drug showing excellent effect against multiple solid tumors, with plasma protein bovine serum albumin (BSA), using methods such as absorption, steady-state fluorescence, time-resolved, fluorescence resonance energy transfer, Fourier transform infrared spectra (FTIR), circular dichroism (CD), synchronous and 3D-fluorescence, salt fluorescence, molecular docking and molecular dynamic simulations. The BSA fluorescence intensity was quenched with increasing concentration of SEL which indicates interactions of SEL with BSA. Stern-Volmer quenching analysis and lifetime studies indicate the involvement of dynamic quenching. However, some contributions from the static quenching mechanism could not be ruled out unambiguously. The association constant was found to be 5.34 × 105 M-1 and it has a single binding site. The Förster distance (r) indicated probable energy transmission between the BSA and SEL. The positive entropy changes and enthalpy change indicate that the main interacting forces are hydrophobic forces, also evidenced by the results of molecular modeling studies. Conformation change in protein framework was revealed from FTIR, synchronous and 3D fluorescence and CD studies. Competitive binding experiments as well as docking studies suggest that SEL attaches itself to site I (subdomain IIA) of BSA where warfarin binds. Molecular dynamic simulations indicate the stability of the SEL-BSA complex. The association energy between BSA and SEL is affected in the presence of different metals differently.


Assuntos
Antineoplásicos , Benzimidazóis , Dicroísmo Circular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Soroalbumina Bovina , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Sítios de Ligação , Espectroscopia de Infravermelho com Transformada de Fourier , Transferência Ressonante de Energia de Fluorescência , Termodinâmica , Espectrometria de Fluorescência
6.
J Exp Bot ; 75(3): 746-759, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37878766

RESUMO

Elucidating protein-protein interactions is crucial for our understanding of molecular processes within living organisms. Microscopy-based techniques can detect protein-protein interactions in vivo at the single-cell level and provide information on their subcellular location. Fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) is one of the most robust imaging approaches, but it is still very challenging to apply this method to proteins which are expressed under native conditions. Here we describe a novel combination of fluorescence proteins (FPs), mCitrine and mScarlet-I, which is ideally suited for FLIM-FRET studies of low abundance proteins expressed from their native promoters in stably transformed plants. The donor mCitrine displays excellent brightness in planta, near-mono-exponential fluorescence decay, and a comparatively long fluorescence lifetime. Moreover, the FRET pair has a good spectral overlap and a large Förster radius. This allowed us to detect constitutive as well as ligand-induced interaction of the Arabidopsis chitin receptor components CERK1 and LYK5 in a set of proof-of-principle experiments. Due to the good brightness of the acceptor mScarlet-I, the FP combination can be readily utilized for co-localization studies. The FP pair is also suitable for co-immunoprecipitation experiments and western blotting, facilitating a multi-method approach for studying and confirming protein-protein interactions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos
7.
Chemistry ; 30(23): e202304137, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253784

RESUMO

The development of a persistent luminescence system with long-lived phosphorescence and color-tunable afterglow at room temperature represents a challenge, largely due to the intensive non-radiative deactivation pathway. In this study, an ultralong-lived room temperature phosphorescence (RTP) system has been achieved using a hydrogen-bonding strategy where poly(vinyl alcohol) (PVA) matrices were doped with tryptophan (Trp) derivatives. The PVA film doped with N-α-(9-Fluorenylmethoxycarbonyl)-L-tryptophan (Fmoc-L-Trp) exhibited a long-lived phosphorescence emission of up to 3859.70 ms, and a blue afterglow for a duration greater than 34 s, under ambient conditions. The introduction of two other fluorescent dyes (i. e., Rhodamine B and Basicred14) to the PVA film facilitates adjustment to the color of the afterglow from blue to orange, and pink, by a triplet-to-singlet Förster-resonance energy transfer (TS-FRET) process. These films have been successfully applied in silk-screen printing and in multicolor afterglow light-emitting diode (LED) arrays.

8.
Mol Pharm ; 21(5): 2198-2211, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38625037

RESUMO

Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.


Assuntos
Sistemas de Liberação de Medicamentos , Micelas , Albumina Sérica Humana , Tensoativos , Humanos , Sítios de Ligação , Sistemas de Liberação de Medicamentos/métodos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Tensoativos/química , Espectrometria de Fluorescência , Naftalenossulfonato de Anilina/química , Ligação Proteica
9.
J Fluoresc ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995477

RESUMO

This research explores the fluorescence properties and photostability of boron nitrogen co-doped graphene quantum dots (BN-GQDs), evaluating their effectiveness as sensors for rutin (RU). BN-GQDs are biocompatible and exhibit notable absorbance and fluorescence characteristics, making them suitable for sensing applications. The study utilized various analytical techniques to investigate the chemical composition, structure, morphology, optical attributes, elemental composition, and particle size of BN-GQDs. Techniques included X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The average particle size of the BN-GQDs was determined to be approximately 3.5 ± 0.3 nm. A clear correlation between the emission intensity ratio and RU concentration was identified across the range of 0.42 to 4.1 µM, featuring an impressively low detection limit (LOD) of 1.23 nM. The application of BN-GQDs as fluorescent probes has facilitated the development of a highly sensitive and selective RU detection method based on Förster resonance energy transfer (FRET) principles. This technique leverages emission at 465 nm. Density Functional Theory (DFT) analyses confirm that FRET is the primary mechanism behind fluorescence quenching, as indicated by the energy levels of the lowest unoccupied molecular orbitals (LUMOs) of BN-GQDs and RU. The method's effectiveness has been validated by measuring RU concentrations in human serum samples, showing a recovery range between 97.8% and 103.31%. Additionally, a smartphone-based detection method utilizing BN-GQDs has been successfully implemented, achieving a detection limit (LOD) of 49 nM.

10.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389669

RESUMO

Cellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions. Here, we applied a three-color single-molecule Förster resonance energy transfer (FRET) combined with three-color photon distribution analysis to compare the conformational cycle of the Hsp70 chaperones DnaK, Ssc1, and BiP. By capturing three distances simultaneously, we can identify coordinated structural changes during the functional cycle. Besides the known conformations of the Hsp70s with docked domains and open lid and undocked domains with closed lid, we observed additional intermediate conformations and distance broadening, suggesting flexibility of the Hsp70s in adopting the states in a coordinated fashion. Interestingly, the difference of this distance broadening varied between DnaK, Ssc1, and BiP. Study of their conformational cycle in the presence of substrate peptide and nucleotide exchange factors strengthened the observation of additional conformational intermediates, with BiP showing coordinated changes more clearly compared to DnaK and Ssc1. Additionally, DnaK and BiP were found to differ in their selectivity for nucleotide analogs, suggesting variability in the recognition mechanism of their nucleotide-binding domains for the different nucleotides. By using three-color FRET, we overcome the limitations of the usual single-distance approach in single-molecule FRET, allowing us to characterize the conformational space of proteins in higher detail.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico HSP70/metabolismo , Organelas/metabolismo , Imagem Individual de Molécula , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mikrochim Acta ; 191(5): 288, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671226

RESUMO

As a neurodegenerative disorder, Alzheimer's disease (AD) is characterized by cognitive dysfunction and behavioral impairment. Among the various genetic risk factors for AD, apoE4 gene plays a pivotal role in the onset and progression of AD, and detection of apoE4 gene holds significance for prevention and early diagnosis of AD. Herein, dual-signal fluorescence detection of fragments associated with apoE ε4 allele near codon 112 (Tc1) and codon 158 (Tc2) was achieved using DNA tetrahedron nanostructure (DTN). The Förster resonance energy transfer (FRET) process in the DTN was initiated in which the nucleic acid intercalating dye thiazole orange (TO) served as the donor and the cyanine dyes of cyanine3 (Cy3) and cyanine5 (Cy5) at the two vertices of DTN served as the acceptors. In the presence of Tc1 and Tc2, the FRET process between TO and the cyanine dyes was hindered by the enzymatic cleavage reaction, which ensures the dual-signal fluorescence assay of apoE4 gene sites. The limit of detection for Tc1 and Tc2 was estimated to be 0.82 nM and 0.77 nM, respectively, and the whole assay was accomplished within 1 h on a microplate reader. The proposed method thus possesses the advantages of easy operation, short detection time, and high-throughput capability.


Assuntos
Apolipoproteína E4 , Carbocianinas , DNA , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Apolipoproteína E4/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Corantes Fluorescentes/química , DNA/química , DNA/genética , Carbocianinas/química , Benzotiazóis/química , Nanoestruturas/química , Quinolinas/química , Limite de Detecção
12.
Nano Lett ; 23(17): 8115-8125, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643406

RESUMO

Tumor-derived extracellular vesicles (EVs) are promising to monitor early stage cancer. Unfortunately, isolating and analyzing EVs from a patient's liquid biopsy are challenging. For this, we devised an EV membrane proteins detection system (EV-MPDS) based on Förster resonance energy transfer (FRET) signals between aptamer quantum dots and AIEgen dye, which eliminated the EV extraction and purification to conveniently diagnose lung cancer. In a cohort of 80 clinical samples, this system showed enhanced accuracy (100% versus 65%) and sensitivity (100% versus 55%) in cancer diagnosis as compared to the ELISA detection method. Improved accuracy of early screening (from 96.4% to 100%) was achieved by comprehensively profiling five biomarkers using a machine learning analysis system. FRET-based tumor EV-MPDS is thus an isolation-free, low-volume (1 µL), and highly accurate approach, providing the potential to aid lung cancer diagnosis and early screening.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Transferência Ressonante de Energia de Fluorescência , Neoplasias Pulmonares/diagnóstico , Ensaio de Imunoadsorção Enzimática , Proteínas de Membrana
13.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731924

RESUMO

Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.


Assuntos
Estudos de Viabilidade , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Espectrometria de Fluorescência/métodos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Fluorescência
14.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928103

RESUMO

The maturation of HIV-1 virions is a crucial process in viral replication. Although T-cells are a primary source of virus production, much of our understanding of virion maturation comes from studies using the HEK293T human embryonic kidney cell line. Notably, there is a lack of comparative analyses between T-cells and HEK293T cells in terms of virion maturation efficiency in existing literature. We previously developed an advanced virion visualization system based on the FRET principle, enabling the effective distinction between immature and mature virions via fluorescence microscopy. In this study, we utilized pseudotyped, single-round infectious viruses tagged with FRET labels (HIV-1 Gag-iFRET∆Env) derived from Jurkat (a human T-lymphocyte cell line) and HEK293T cells to evaluate their virion maturation rates. HEK293T-derived virions demonstrated a maturity rate of 81.79%, consistent with other studies and our previous findings. However, virions originating from Jurkat cells demonstrated a significantly reduced maturation rate of 68.67% (p < 0.0001). Correspondingly, viruses produced from Jurkat cells exhibited significantly reduced infectivity compared to those derived from HEK293T cells, with the relative infectivity measured at 65.3%. This finding is consistent with the observed relative maturation rate of viruses produced by Jurkat cells. These findings suggest that initiation of virion maturation directly correlates with viral infectivity. Our observation highlights the dynamic nature of virus-host interactions and their implications for virion production and infectivity.


Assuntos
Transferência Ressonante de Energia de Fluorescência , HIV-1 , Vírion , Humanos , HIV-1/fisiologia , HIV-1/patogenicidade , Células HEK293 , Vírion/metabolismo , Células Jurkat , Transferência Ressonante de Energia de Fluorescência/métodos , Replicação Viral , Montagem de Vírus , Infecções por HIV/virologia
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928159

RESUMO

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling. Although its mechanisms of action in these forms of synaptic plasticity are not completely well established, the activities of Arc include the remodeling of the actin cytoskeleton, the facilitation of AMPA receptor (AMPAR) endocytosis, and the regulation of the transcription of AMPAR subunits. In addition, Arc has sequence and structural similarity to retroviral Gag proteins and self-associates into virus-like particles that encapsulate mRNA and perhaps other cargo for intercellular transport. Each of these activities is likely to be influenced by Arc's reversible self-association into multiple oligomeric species. Here, we used mass photometry to show that Arc exists predominantly as monomers, dimers, and trimers at approximately 20 nM concentration in vitro. Fluorescence fluctuation spectroscopy revealed that Arc is almost exclusively present as low-order (monomer to tetramer) oligomers in the cytoplasm of living cells, over a 200 nM to 5 µM concentration range. We also confirmed that an α-helical segment in the N-terminal domain contains essential determinants of Arc's self-association.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Multimerização Proteica , Humanos , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Animais
16.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892166

RESUMO

Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Proliferação de Células , Receptores ErbB , Receptor ErbB-2 , Transdução de Sinais , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores ErbB/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Feminino , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Transferência Ressonante de Energia de Fluorescência , Ativação Transcricional/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico
17.
Molecules ; 29(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398572

RESUMO

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Assuntos
Lipídeos de Membrana , Receptores Nicotínicos , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Transferência Ressonante de Energia de Fluorescência , Membranas/metabolismo , Receptores Nicotínicos/metabolismo
18.
Angew Chem Int Ed Engl ; 63(9): e202317376, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38229423

RESUMO

Although colloidal perovskite nanocrystal (PNC) solution has exhibited near-unity photoluminescence quantum yield (PLQY), the luminance would be severely quenched when the PNC solution is assembled into thin films due to the agglomeration and fusion of NCs caused by the exfoliation of surface ligands and non-radiative Förster resonance energy transfer (FRET) from small to large particle sizes, which seriously affected the performances of light-emitting diodes (LEDs). Here, we used Guanidine thiocyanate (GASCN) and Sodium thiocyanate (NaSCN) to achieve effective CsPbI3 PNC surface reconstruction. Due to the strong coordination ability of these small molecules with the anions and cations on the surface of the PNCs, they can provide strong surface protection against PNC fusion during centrifugal purification process and repair the surface defects of PNCs, so that the original uniform size distribution of PNCs can be maintained and FRET between close-packed PNC films is effectively suppressed, which allows the emission characteristics of the films to be preserved. As a result, highly oriented, smooth and nearly defect-free high-quality PNC thin films are obtained, with PLQY as high as 95.1 %, far exceeding that of the original film, and corresponding LEDs exhibit a maximum external quantum efficiency of 24.5 %.

19.
Angew Chem Int Ed Engl ; : e202411514, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940633

RESUMO

Given that type I photosensitizers (PSs) possess a good hypoxic tolerance, developing an innovative tactic to construct type I PSs is crucially important, but remains a challenge. Herein, we present a smart molecular design strategy based on the Förster resonance energy transfer (FRET) mechanism to develop a type I photodynamic therapy (PDT) agent with an encouraging amplification effect for accurate hypoxic tumor therapy. Of note, benefiting from the FRET effect, the obtained nanostructured type I PDT agent (NanoPcSZ) with boosted light-harvesting ability not only amplifies superoxide radical (O2•-) production but also promotes heat generation upon near-infrared light irradiation. These features facilitate NanoPcSZ to realize excellent phototherapeutic response under both normal and hypoxic environments. As a result, both in vitro and in vivo experiments achieved a remarkable improvement in therapeutic efficacy via the combined effect of photothermal action and type I photoreaction. Notably, NanoPcSZ can be eliminated from organs (including the liver, lung, spleen, and kidney) apart from the tumor site and excreted through urine within 24 h of its systemic administration. In this way, the potential biotoxicity of drug accumulation can be avoided and the biosafety can be further enhanced.

20.
Angew Chem Int Ed Engl ; 63(20): e202402865, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415964

RESUMO

Recently, stimulus-responsive organic materials with room-temperature phosphorescence (RTP) properties have attracted significant attention owing to their potential applications in chemical sensing, anticounterfeiting, and displays. However, molecular design currently lacks systematicity and effectiveness. Herein, we report a capture-release strategy for the construction of reversible RTP via B/N Lewis pairs. Specifically, the RTP of the Lewis acid of 7-bromo-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (BrBA) can be deactivated through capturing by the Lewis base, N,N-diphenyl-4-(pyridin-4-yl)aniline (TPAPy), and reactivated by dissociation of B-N bonds to release BrBA. Reversible RTP is attributed to the exceptional self-assembly capability of BrBA, whereas the tunable RTP colors are derived from distinct Förster resonance energy transfer (FRET) processes. The potential applications of RTP materials in information storage and anti-counterfeiting were also experimentally validated. The capture-release approach proposed in this study offers an effective strategy for designing stimulus-responsive materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa