Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 2): 116078, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182832

RESUMO

Nannochloropsis microalgae biochar has become increasingly attractive due to its potential as a component of microalgae-based biodiesel blends. This biochar is a by-product of the pyrolysis process, but its use in the energy sector has been limited. In this study, pellets were formed using microalgae residues and their physiochemical properties were analyzed to assess the feasibility of using microalgae biochar as a fuel source. Three types of biomasses, namely date seed dust, coconut shell waste, and microalgae biochar, were utilized to produce fuel pellets. These pellets were categorized into three types, B1, B2, and B3, based on the composition of the biomass. The inclusion of microalgae biochar in the pellets resulted in enhanced calorific value, as well as improved heating value and bulk density. Moreover, the mechanical strength of microalgae-based pellets was higher due to their high lignin content compared to another biomass. The moisture absorption test results showed that the use of mixed biomass reduced the moisture content over an extended period. Microalgae pellets exhibited higher young's modulus and greater impact resistance, indicating greater mechanical strength. Furthermore, due to their higher calorific value, the combustion time of microalgae pellets was greater than that of other biomass. In conclusion, the results of this study suggest that microalgae biochar can be a promising alternative fuel source for the energy sector.


Assuntos
Microalgas , Biomassa , Pirólise , Micro-Ondas
2.
Environ Dev Sustain ; : 1-39, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530442

RESUMO

Abstract: The global market for fuel pellets (FPs) has been steadily growing because of a shift to coal substitutes. However, sustainability and the availability of biomass are the main issues. Various kinds of bio-wastes can be valorized through cutting-edge technologies. In the coffee industry, a valuable organic waste called spent coffee grounds (SCGs) is generated in bulk. SCG can be divided into two components, namely spent coffee ground oil and defatted spent coffee grounds (DSCG). SCG and DSCG can be used to produce FPs with excellent higher heating values. This review highlights that burning FPs composed of 100% SCG is not feasible due to the high emission of NOx. Moreover, the combustion is accompanied by a rapid temperature drop due to incomplete combustion which leads to lower boiler combustion efficiencies and increased carbon monoxide emissions. This was because of the low pellet strength and bulk density of the FP. Mixing SCG with other biomass offers improved boiler efficiency and emissions. Some of the reported optimized FPs include 75% SCG + 20% coffee silverskin, 30% SCG + 70% pine sawdust, 90% SCG + 10% crude glycerol, 32% SCG + 23% coal fines + 11% sawdust + 18% mielie husks + 10% waste paper + 6% paper pulp, and 50% SCG + 50% pine sawdust. This review noted the absence of combustion and emissions analyses of DSCG and the need for their future assessment. Valorization of DSCG offers a good pathway to improve the economics of an SCG-based biorefinery where the extracted SCGO can be valorized in other applications. The combustion and emissions of DSCG were not previously reported in detail. Therefore, future investigation of DSCG in boilers is essential to assess the potential of this industry and improve its economics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10668-022-02361-z.

3.
Sci Total Environ ; 944: 173883, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866142

RESUMO

The study explores the effect of varying molasses proportions as a binder on the characteristics of densified char obtained through the slow co-pyrolysis of plastic waste and Eucalyptus wood waste (Waste low-density polyethylene - Eucalyptus wood (WLDPE-EW) and Waste Polystyrene - Eucalyptus wood (WPS-EW)). Pyrolysis was conducted at 500 °C with a residence time of 120 min, employing plastic to wood waste ratios of 1:2 and 1:3 (w/w). The focus was on how varying the proportion of molasses (10-30 %), influences the physical and combustion properties of the resulting biofuel pellets. Our findings reveal that the calorific value of the pellets decreased from 28.94 to 27.44 MJ/Kg as the molasses content increased. However, this decrease in calorific value was compensated by an increase in pellet mass density, which led to a higher energy density overall. This phenomenon was attributed to the formation of solid bridges between particles, facilitated by molasses, effectively decreasing particle spacing. The structural integrity of the pellets, as measured by the impact resistance index, improved significantly (43-47 %) with the addition of molasses. However, a significant change in the combustion characteristics depicted by lower ignition and burnout temperatures were observed due to decrease in fixed carbon value and increase in volatile matter content, as the proportion of molasses increased. Despite these changes, the pellets demonstrated a stable combustion profile, suggesting that molasses are an effective binder for producing biofuel pellets through the densification of char derived from the co-pyrolysis of plastic and Eucalyptus wood waste. The optimized molasses concentration analyzed through multifactor regression analysis was 16.96 % with 28 % WLDPE proportion to produce WLDPE-EW char pellets. This study highlights the potential of using molasses as a sustainable binder to enhance the mechanical and combustion properties of biofuel pellets, offering a viable pathway for the valorization of waste materials.

4.
Waste Manag ; 39: 258-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697388

RESUMO

This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively.


Assuntos
Biocombustíveis/análise , Energia Renovável , Universidades , Gerenciamento de Resíduos , Culinária , Resíduos de Alimentos , Ohio , Óleos/análise , Papel
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa