RESUMO
The unbalanced immune state is the dominant feature of myocardial injury. However, the complicated pathology of cardiovascular diseases and the unique structure of cardiac tissue lead to challenges for effective immunoregulation therapy. Here, we exploited oral fullerene nanoscavenger (OFNS) to maintain intestinal redox homeostasis to resolve systemic inflammation for effectively preventing distal myocardial injury through bidirectional communication along the heart-gut immune axis. Observably, OFNS regulated redox microenvironment to repair cellular injury and reduce inflammation in vitro. Subsequently, OFNS prevented myocardial injury by regulating intestinal redox homeostasis and recovering epithelium barrier integrity in vivo. Based on the profiles of transcriptomics and proteomics, we demonstrated that OFNS balanced intestinal and systemic immune homeostasis for remote cardioprotection. Of note, we applied this principle to intervene myocardial infarction in mice and mini-pigs. These findings highlight that locally addressing intestinal redox to inhibit systemic inflammation could be a potent strategy for resolving remote tissue injury.
Assuntos
Fulerenos , Infarto do Miocárdio , Suínos , Camundongos , Animais , Fulerenos/farmacologia , Porco Miniatura , Inflamação/patologia , Infarto do Miocárdio/prevenção & controle , Homeostase , Mucosa IntestinalRESUMO
Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.
RESUMO
There is increasing attention to chemical applications of transmission electron microscopy, which is often plagued by radiation damage. The damage in organic matter predominantly occurs via radiolysis. Although radiolysis is highly important, previous studies on radiolysis have largely been descriptive and qualitative, lacking in such fundamental information as the product structure, the influence of the energy of the electrons, and the reaction kinetics. We need a chemically well-defined system to obtain such data and have chosen as a model a variable-temperature and variable-voltage (VT/VV) study of the [2 + 2] dimerization of a van der Waals dimer [60]fullerene (C60) to C120 in a carbon nanotube (CNT), as studied for several hundred individual reaction events at atomic resolution. We report here the identification of five reaction pathways that serve as mechanistic models of radiolysis damage. Two of them occur via a radical cation of the specimen generated by specimen ionization, and three involve singlet or triplet excited states of the specimen, as initiated by electron excitation of the CNT, followed by energy transfer to the specimen. The [2 + 2] product was identified by measuring the distance between the two C60 moieties, and the mechanisms were distinguished by the pre-exponential factor and the Arrhenius activation energythe standard protocol of chemical kinetic studies. The results illustrate the importance of VT/VV kinetic analysis in the studies of radiation damage and show that chemical ionization and electron excitation are inseparable, but different, mechanisms of radiation damage, which has so far been classified loosely under the single term "ionization."
RESUMO
Boroxine- and borazine-cage analogs to C20, C60, and C70 were calculated and compared in terms of structure, strain indicators, and physical properties relevant to nanoscale applications. The results show C60 and C70 type cages are less strained than the smaller congener, primarily due to minimized bending in the B-arylene-B segments. The smallest cage calculated has a diameter of 2.4 nm, which increases up to 4.9 nm by either variation of the polyhedron (C20 < C60 < C70-type cage) or organic spacer elongation between boron centers. All calculated cages are porous (apertures ranging from 0.6 to 1.9 nm). Molecular electrostatic potential and Hirshfeld population analysis revealed both nucleophilic and electrophilic sites in the interior and exterior cage surfaces. HOMO-LUMO gaps range from 3.98 to 4.89 eV and 5.10-5.18 eV for the boroxine- and borazine-cages, respectively. Our findings provide insights into the design and properties of highly porous boroxine and borazine cages for nanoscience.
RESUMO
Manipulating the symmetry of fullerene-based low-dimensional materials is crucial to the development of electronic devices and modern nonvolatile memories. However, there have been few reports on studying the physicochemical properties of fullerene and its derivatives by controlling the symmetries. Herein, we demonstrate ferroelectricity in Sc3N@Ih-C80-Pd/Pt adducts with relatively strong spontaneous polarization. Polarization originates from subtle molecular interactions between Sc3N@Ih-C80 and Pd/Pt atoms, breaking the structural symmetry. Additionally, we investigate how a temperature-dependent polar-nonpolar phase transition affects the corresponding nonadiabatic electron-hole recombination process in the ferroelectric fullerene adduct Sc3N@Ih-C80-Pd. The results indicate that polarization has a greater impact than temperature effects, resulting in an extension of the carrier lifetime in the polar phase by over 3 times compared to that in the nonpolar phase. Our findings unveil new members of the ferroelectric fullerene family and provide guidance for improving the performance of optoelectronic materials.
RESUMO
The novel 2D quasi-hexagonal phase of covalently bonded fullerene molecules (qHP C60), the so-called graphullerene, has displayed far superior electron mobilities, if compared to the parent van der Waals three-dimensional crystal (vdW C60). Herein, we present a comparative study of the electronic properties of vdW and qHP C60 using state-of-the-art electronic-structure calculations and a full quantum-mechanical treatment of electron transfer. We show that both materials entail polaronic localization of electrons with similar binding energies (≈0.1 eV) and, therefore, they share the same charge transport via polaron hopping. In fact, we quantitatively reproduce the sizable increment of the electron mobility measured for qHP C60 and identify its origin in the increased electronic coupling between C60 units.
RESUMO
One of the most notorious issues with classic perovskite (MAPbI3) is its rapid degradation caused by generating superoxide radicals (O2 â¢-) on its surface under light and oxygen environments (light/O2). The differences in O2 â¢- generation rate and tolerance to O2 â¢- among perovskite with different structures are pending. For the first time it is validated through solid-electron paramagnetic resonance (EPR) that MAPbI3 and Cs0.175FA0.75MA0.075PbI3 (PVSK) crystals can generate O2 â¢- in an air atmosphere. The rapid degradation of perovskite buried interfaces caused by O2 â¢- dominates the nonexposed air aging process of SnO2-based perovskite film, and the degradation rate of MAPbI3 film is faster than that of PVSK film. The fullerene pyridine derivatives (C60OPD), which function as a buffer layer between SnO2 and PVSK to scavenge O2 â¢- and prevent degradation at the buried interface of the PVSK film, reduce the density of defect states, and accelerate the transmission of photogenerated electrons. The photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs) optimizes with C60OPD increased from 21.15% to 23.11% while significantly improving the stability in light/O2. This work reveals the hidden degradation of perovskite-buried interfaces caused by O2 â¢- and explores efficient ways for perovskite to resist O2 â¢-.
RESUMO
Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.
RESUMO
Chiral alkyl chains are ubiquitously observed in organic semiconductor materials and can regulate solution processability and active layer morphology, but the effect of stereoisomers on photovoltaic performance has rarely been investigated. For the racemic Y-type acceptors widely used in organic solar cells, it remains unknown if the individual chiral molecules separate into the conglomerate phase or if racemic phase prevails. Here, the photovoltaic performance of enantiomerically pure Y6 derivatives, (S,S)/(R,R)-BTP-4F, and their chiral mixtures are compared. It is found that (S,S) and (R,R)-BTP-4F molecule in the racemic mixtures tends to interact with its enantiomer. The racemic mixtures enable efficient light harvesting, fast hole transfer, and long polaron lifetime, which is conducive to charge generation and suppresses the recombination losses. Moreover, abundant charge diffusion pathways provided by the racemate contribute to efficient charge transport. As a result, the racemate system maximizes the power output and minimizes losses, leading to a higher efficiency of 18.16% and a reduced energy loss of 0.549 eV, as compared to the enantiomerically pure molecules. This study demonstrates that the chirality of non-fullerene acceptors should receive more attention and be designed rationally to enhance the efficiency of organic solar cells.
RESUMO
Zinc oxide (ZnO) is widely used as an electron transporting layer (ETL) for organic solar cells (OSCs). Here, a low-cost commercial water/alcohol-soluble fluorescent conversion agent, sodium 2,2'-([1,1'-biphenyl]-4,4'-diyldivinylene)-bis(benzenesulfonate) (CBS), is incorporated into ZnO to develop a novel organic-inorganic hybrid ETL for high-performance OSCs. The photoinduced charge transfer from CBS to ZnO significantly improves the charge transport properties of ZnO, resulting in faster electron extraction and reduced charge recombination in OSC devices with ZnO:CBS ETLs. ZnO:CBS-based devices exhibit higher power conversion efficiencies (PCEs) than their pure ZnO-based counterparts, especially in devices with a thicker ETL, which is more suitable for roll-to-roll and large-area module processing. Furthermore, the strong ultraviolet-light absorption capability of CBS inhibits the photodegradation of the active layer, improving the photostability of ZnO:CBS based OSC devices. Therefore, this work provides a simple and effective strategy for realizing high-performance OSCs with high PCE and good photostability, which can further facilitate the commercialization of OSCs.
RESUMO
Targeted treatment of the interface between electron transport layers (ETL) and perovskite layers is highly desirable for achieving passivating effects and suppressing carrier nonradiative recombination, leading to high performance and long-term stability in perovskite solar cells (PSCs). In this study, a series of non-fullerene acceptors (NFAs, Y-H, Y-F, and Y-Cl) are introduced to optimize the properties of the perovskite/ETL interface. This optimization involves passivating Pb2+ defects, releasing stress, and modulating carrier dynamics through interactions with the perovskite. Remarkably, after modifying with NFAs, the absorption range of perovskite films into the near-infrared region is extended. As expected, Y-F, with the largest electrostatic potential, facilitates the strongest interaction between the perovskite and its functional groups. Consequently, champion power conversion efficiencies of 21.17%, 22.21%, 23.25%, and 22.31% are achieved for control, Y-H-, Y-F-, and Y-Cl-based FA0.88Cs0.12PbI2.64Br0.36 (FACs) devices, respectively. This treatment also enhances the heat stability and air stability of the corresponding devices. Additionally, these modifier layers are applied to enhance the efficiency of Cs0.05(FA0.95MA0.05)0.95PbI2.64Br0.36 (FAMA) devices. Notably, a champion PCE exceeding 24% is achieved in the Y-F-based FAMA device. Therefore, this study provides a facile and effective approach to target the interface, thereby improving the efficiency and stability of PSCs.
RESUMO
Inverted perovskite solar cells (PSCs) attract continuing interest due to their low processing temperature, suppressed hysteresis, and compatibility with tandem cells. Considerable progress has been made with reported power conversion efficiency (PCE) surpassing 26%. Electron transport Materials (ETMs) play a critical role in achieving high-performance PSCs because they not only govern electron extraction and transport from the perovskite layer to the cathode, but also protect the perovskite from contact with ambient environment. On the other hand, the non-radiative recombination losses at the perovskite/ETM interface also limits the future development of PSCs. Compared with fullerene derivatives, non-fullerene n-type organic semiconductors feature advantages like molecular structure diversity, adjustable energy level, and easy modification. Herein, the non-fullerene ETM is systematically summarized based on the molecular functionalization strategy. Various types of molecular design approaches for producing non-fullerene ETM are presented, and the insight on relationship of chemical structure and device performance is discussed. Meantime, the future trend of non-fullerene ETM is analyzed. It is hoped that this review provides insightful perspective for the innovation of new non-fullerene ETMs toward more efficient and stable PSCs.
RESUMO
Fullerene (C60) crystals have attracted considerable attention in the field of optoelectronic devices owing to their excellent performance as n-type semiconductor material. However, a challenge still remains unbeaten as to the continuous crystallization of non-solvated C60 single-crystal films with high coverage and uniform alignment using low-cost solution techniques. Here, a facile bar coating method is used to prepare ribbon-shaped non-solvated C60 crystals with a large area (up to centimeters) and high coverage (>95%) by precisely controlling the crystallization process from specific solvents. Benefiting from the non-solvated crystalline structure, well-distributed thickness, uniform morphological alignment, and crystallographic orientation, organic field-effect transistors fabricated from the C60 single-crystal films exhibit a high average electron mobility of 2.28 cm2 V-1s-1, along with the coefficient of variance (CV) as small as 13.6%. This efficient manufacturing method will lay a strong foundation for C60 single-crystal films to fit into the future high-performance integrated optoelectronic application.
RESUMO
In this study, two novel donor-acceptor (D-A) copolymers are designed and synthesized, DTBT-2T and DTBT-2T2F with 2,2'-bithiophene or 3,3'-difluoro-2,2'-bithiophene as the donor unit and dithienobenzothiadiazole as the acceptor unit, and used them as donor materials in non-fullerene organic solar cells (OSCs). Due to enhanced planarity of polymer chains resulted by the intramolecular F···S noncovalent interactions, the incorporation of 3,3'-difluoro-2,2'-bithiophene unit instead of 2,2'-bithiophene into the polymers can enhance their molecular packing, crystallinity and hole mobility. The DTBT-2T:L8-BO based binary OSCs deliver a power conversion efficiency (PCE) of only 9.71% with a Voc of 0.78 V, a Jsc of 20.69 mA cm-2 , and an FF of 59.67%. Moreover, the introduction of fluoro atoms can lower the highest occupied molecular orbital levels. As a result, DTBT-2T2F:L8-BO based single-junction binary OSCs exhibited less recombination loss, more balanced charge mobility, and more favorable morphology, resulting in an impressive PCE of 17.03% with a higher Voc of 0.89 V, a Jsc of 25.40 mA cm-2, and an FF of 75.74%. These results indicate that 3,3'-difluoro-2,2'-bithiophene unit can be used as an effective building block to synthesize high performance polymer donor materials. This work greatly expands the selection range of donor units for constructing high-performance polymers.
RESUMO
Converting carbon dioxide (CO2) into high-value chemicals using solar energy remains a formidable challenge. In this study, the CSC@PM6:IDT6CN-M:IDT8CN-M non-fullerene small-molecule organic semiconductor is designed with highly efficient electron donor-acceptor (D-A) interface for photocatalytic reduction of CO2. Atomic Force Microscope and Transmission Electron Microscope images confirmed the formation of an interpenetrating fibrillar network after combination of donor and acceptor. The CO yield from the CSC@PM6:IDT6CN-M:IDT8CN-M reached 1346 µmol g-1 h-1, surpassing those of numerous reported inorganic photocatalysts. The D-A structure effectively facilitated charge separation to enable electrons transfer from the PM6 to IDT6CN-M:IDT8CN-M. Meanwhile, attributing to the dipole moments of the strong intermolecular interactions between IDT6CN-M and IDT8CN-M, the intermolecular forces are enhanced, and laminar stacking and π-π stacking are strengthened, thereby reinforcing energy transfer between acceptor molecules and significantly enhanced charge separation. Moreover, the strong internal electric field in the D-A interface enhanced the excited state lifetime of PM6:IDT6CN-M:IDT8CN-M. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis demonstrated that carboxylate (COOH*) is the predominant intermediate during CO2 reduction, and possible pathways of CO2 reduction to CO are deduced. This study presents a novel approach for designing materials with D-A interface to achieve high photocatalytic activity.
RESUMO
Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2). These NFAs comprise a 12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno-[3,2-b]indole (BBO) core. One end of the core attaches to a mono- or di-halogenated 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) end group (IPC1F, IPC1Cl, IPC2F, or IPC2Cl), while the other end connects to a 2-(5,6-dihalo-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) end group (IC2F or IC2Cl). The optical and electronic properties of these NFAs can be finely tuned by controlling the number of halogen atoms. Crucially, these NFAs demonstrate excellent compatibility with PM6 even in o-xylene, facilitating the production of additive-free OSCs. The di-halogenated IPC-based NFAs outperform their mono-halogenated counterparts in photovoltaic performance within OSCs. Remarkably, the di-halogenated IPC-based NFAs maintain 94â98% of their initial PCEs over 2000 h in air without encapsulation, indicating superior long-term device stability. These findings imply that the integration of di-halogenated IPCs in asymmetric NFA design offers a promising route to efficient, stable OSCs manufactured through environmentally friendly processes.
RESUMO
Molecular recognition remains one of the most desirable means of cellular communication. Each cell offers a unique surface pattern of biomolecules that makes it very specific about the nature of molecules that interact with the cell. Protein-glycan interaction has been one of the most common forms of cell signaling. Glycans expressed on the cell surface interact with an exogenous protein, and in many cases lead to a physiological response. These carbohydrate-binding proteins, commonly known as lectins, are very specific to the glycan they bind to. An exogenous lectin interacting with an animal cell surface glycan is generally studied using the classical hemagglutination assay. However, this method presents certain challenges that make it imperative to design and develop novel methods that are more specific and efficient in their interaction. In the last decade, a few methods have been developed to analyze more diverse reactions and use a lesser amount of sample. In some cases, the processing of the sample is also reduced. This review discusses how the methods have evolved over the decades and how they have reduced error while becoming more efficient.
Assuntos
Carboidratos , Polissacarídeos , Animais , Polissacarídeos/química , Lectinas/metabolismoRESUMO
Ion-endohedral-fullerene has attracted growing interest due to the unique electronic and structural characteristics arising from its distinctive ionic nature. Although there has been only one reported ion-encapsulated fullerene, Li+ @C60 , a significant number of fundamental and applied studies have been conducted, making a substantial impact not only in chemistry and physics but also across various interdisciplinary research fields. Nevertheless, studies on ion-endohedral fullerenes are still in their infancy due to the limitations in variety, and hence, it remains an open question how the size and symmetry of fullerene, as well as the motion and position of the encapsulated ion, affect their physical/chemical properties. Herein, we report the synthesis of lithium-ion-endohedral [70]fullerene (Li+ @C70 X- , X=PF6 - and TFSI- ), a novel ionic endohedral fullerene. X-ray crystallography confirmed the encapsulation of Li+ by C70 cage as well as its ion-pair structure stabilized by external TFSI- counter anion. The encapsulated Li+ drastically lowered the orbital energy of the C70 cage by Coulomb interactions but did not affect the orbital energy gap and degeneracy. DFT studies were also performed, which supported the experimentally observed electronic effects caused by the encapsulated Li+ .
RESUMO
Molecules with curved architecture can exhibit unique optoelectronic properties due to the concave-convex π-surface. However, synthesizing negatively curved saddle-shaped aromatic systems has been challenging due to the internal structural strain. Herein, we report the facile synthesis of two polyhexagonal molecular systems, 1 and 2, with saddle shape geometry by judiciously varying the aromatic moiety, avoiding the harsh synthetic methods as that of heptagonal aromatic saddle systems. The unique geometry preferences of B, N, and S furnish suitable curvature to the molecules, featuring saddle shape. The saddle geometry also enables them to interact with fullerene C60 , and the supramolecular interactions of fullerene C60 with 1 and 2 modify their optoelectronic properties. Crystal structure analysis reveals that 1, with a small π-surface, forms a double columnar array of fullerenes in the solid state. In contrast, 2 with a large π-surface produces a supramolecular capsule entrapping two discrete fullerenes. The intermolecular interactions between B, N, S, and the aryl-π surface of the host and C60 guest are the stabilizing factors for creating these supramolecular structures. Comprehensive computational, optical, and Raman spectroscopic studies establish the charge transfer interactions between B-N doped heterocycle host and fullerene C60 guest.
RESUMO
Buckybowls, bowl-shaped polyaromatic hydrocarbons, have received intensive interest owing to their multifaceted potentials in supramolecular chemistry and materials science. Buckybowls possess unique chemical and physical properties associated with their concave and convex faces. In view of the shape complementarity, which is one of the key factors for host-guest assembly, buckybowls are ideal receptors for fullerenes. In fact, the host-guest assembly between buckybowls and fullerenes is one of the most active topics in buckybowls chemistry, and the resulting supramolecular materials show promising applications in optoelectronics, biomaterials, and so forth. In this tutorial review, we present an overview for the progress on fullerene receptors based on buckybowls over the last decade.