RESUMO
Microvascular endothelial damage caused by intestinal ischemiaâreperfusion (II/R) is a primary catalyst for microcirculation dysfunction and enterogenous infection. Previous studies have mainly focused on how neutrophil extracellular traps (NETs) and ferroptosis cause intestinal epithelial injury, and little attention has been given to how NETs, mainly from circulatory neutrophils, affect intestinal endothelial cells during II/R. This study aimed to unravel the mechanisms through which NETs cause intestinal microvascular dysfunction. We first detected heightened local NET infiltration around the intestinal microvasculature, accompanied by increased endothelial cell ferroptosis, resulting in microcirculation dysfunction in both human and animal II/R models. However, the administration of the ferroptosis inhibitor ferrostatin-1 or the inhibition of NETs via neutrophil-specific peptidylarginine deiminase 4 (Pad4) deficiency led to positive outcomes, with reduced intestinal endothelial ferroptosis and microvascular function recovery. Moreover, RNA-seq analysis revealed a significant enrichment of mitophagy- and ferroptosis-related signaling pathways in HUVECs incubated with NETs. Mechanistically, elevated NET formation induced Fundc1 phosphorylation at Tyr18 in intestinal endothelial cells, which led to mitophagy inhibition, mitochondrial quality control imbalance, and excessive mitochondrial ROS generation and lipid peroxidation, resulting in endothelial ferroptosis and microvascular dysfunction. Nevertheless, using the mitophagy activator urolithin A or AAV-Fundc1 transfection could reverse this process and ameliorate microvascular damage. We first demonstrate that increased NETosis could result in intestinal microcirculatory dysfunction and conclude that suppressed NET formation can mitigate intestinal endothelial ferroptosis by improving Fundc1-dependent mitophagy. Targeting NETs could be a promising approach for treating II/R-induced intestinal microcirculatory dysfunction.
Assuntos
Armadilhas Extracelulares , Ferroptose , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Células Endoteliais , Mitofagia , Microcirculação , Neutrófilos/metabolismoRESUMO
Mitophagy preserves microvascular structure and function during myocardial ischemia/reperfusion (I/R) injury. Empagliflozin, an anti-diabetes drug, may also protect mitochondria. We explored whether empagliflozin could reduce cardiac microvascular I/R injury by enhancing mitophagy. In mice, I/R injury induced luminal stenosis, microvessel wall damage, erythrocyte accumulation and perfusion defects in the myocardial microcirculation. Additionally, I/R triggered endothelial hyperpermeability and myocardial neutrophil infiltration, which upregulated adhesive factors and endothelin-1 but downregulated vascular endothelial cadherin and endothelial nitric oxide synthase in heart tissue. In vitro, I/R impaired the endothelial barrier function and integrity of cardiac microvascular endothelial cells (CMECs), while empagliflozin preserved CMEC homeostasis and thus maintained cardiac microvascular structure and function. I/R activated mitochondrial fission, oxidative stress and apoptotic signaling in CMECs, whereas empagliflozin normalized mitochondrial fission and fusion, neutralized supraphysiologic reactive oxygen species concentrations and suppressed mitochondrial apoptosis. Empagliflozin exerted these protective effects by activating FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Both in vitro and in vivo, genetic ablation of AMPKα1 or FUNDC1 abolished the beneficial effects of empagliflozin on the myocardial microvasculature and CMECs. Taken together, the preservation of mitochondrial function through an activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway is the working mechanism of empagliflozin in attenuating cardiac microvascular I/R injury.