Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566201

RESUMO

Microglia play a significant role in immune defense and tissue repair in the central nervous system (CNS). Microglial activation and the resulting neuroinflammation play a key role in the pathogenesis of neurodegenerative disorders. Recently, inflammation reduction strategies in neurodegenerative diseases have attracted increasing attention. Herein, we discovered and evaluated the anti-neuroinflammatory potential of compounds from the Antarctic fungi strain Aspergillus sp. SF-7402 in lipopolysaccharide (LPS)-stimulated BV2 cells. Four metabolites were isolated from the fungi through chemical investigations, namely, 5-methoxysterigmatocystin (1), sterigmatocystin (2), aversin (3), and 6,8-O-dimethylversicolorin A (4). Their chemical structures were elucidated by extensive spectroscopic analysis and HR-ESI-MS, as well as by comparison with those reported in literature. Anti-neuroinflammatory effects of the isolated metabolites were evaluated by measuring the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in LPS-activated microglia at non-cytotoxic concentrations. Sterigmatocystins (1 and 2) displayed significant effects on NO production and mild effects on TNF-α and IL-6 expression inhibition. The molecular mechanisms underlying this activity were investigated using Western blot analysis. Sterigmatocystin treatment inhibited NO production via downregulation of inducible nitric oxide synthase (iNOS) expression in LPS-stimulated BV2 cells. Additionally, sterigmatocystins reduced nuclear translocation of NF-κB. These results suggest that sterigmatocystins present in the fungal strain Aspergillus sp. are promising candidates for the treatment of neuroinflammatory diseases.


Assuntos
Microglia , NF-kappa B , Regiões Antárticas , Anti-Inflamatórios/química , Aspergillus/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Esterigmatocistina/metabolismo , Esterigmatocistina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Biomolecules ; 12(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551248

RESUMO

Aspergillus unguis belongs to the Aspergillus section Nidulantes. This species is found in soils and organisms from marine environments, such as jellyfishes and sponges. The first chemical study reported in the literature dates from 1970, with depsidones nidulin (1), nornidulin (2), and unguinol (3) being the first isolated compounds. Fifty-two years since this first study, the isolation and characterization of ninety-seven (97) compounds have been reported. These compounds are from different classes, such as depsides, depsidones, phthalides, cyclopeptides, indanones, diarylethers, pyrones, benzoic acid derivatives, orcinol/orsenillate derivatives, and sesterpenoids. In terms of biological activities, the first studies on isolated compounds from A. unguis came only in the 1990s. Considering the tendency for antiparasitic and antibiotics to become ineffective against resistant microorganisms and larvae, A. unguis compounds have also been extensively investigated and some compounds are considered very promising. In addition to these larvicidal and antimicrobial activities, these compounds also show activity against cancer cell lines, animal growth promotion, antimalarial and antioxidant activities. Despite the diversity of these compounds and reported biological activities, A. unguis remains an interesting target for studies on metabolic induction to produce new compounds, the determination of new biological activities, medicinal chemistry, structural modification, biotechnological approaches, and molecular modeling, which have yet to be extensively explored.


Assuntos
Anti-Infecciosos , Aspergillus , Animais , Aspergillus/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/química , Modelos Moleculares
3.
Toxins (Basel) ; 10(9)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142887

RESUMO

Mycotoxins are toxic mold metabolites that can persist in environment long after the fungi species responsible for their production disappear. Critical workplace for mycotoxins presence has already been studied and nowadays it is possible to recognize that exposure to mycotoxins through inhalation occurs due to their presence in dust. This study aimed to assess occupational co-exposure to multiple mycotoxins in a fresh bread dough company, an occupational setting not studied until now. Occupational exposure assessment to mycotoxins was done using a LC-MS/MS urinary multi-biomarker approach. Twenty-one workers and nineteen individuals that were used as controls participated in the study. Workers/controls (spot-urine) and environment (settled dust) samples were collected and analyzed. Concerning workers group, DON-GlcA, and OTA were the most prevalent biomarkers (>LOD), 66% and 90.5%, respectively. In the control group, OTA was also one of the most detected (68%) followed by CIT (58%) and DON-GlcA (58%). DON was the mycotoxin measured in high amounts in the settled dust sample (58.2 ng/g). Both workers and controls are exposed to several mycotoxins simultaneously. The workers group, due to their high contact with flour dust, revealed a higher exposure to DON. Considering these results, risk management measures must be applied including specific and adequate health surveillance programs in order to avoid exposure and consequently the associated health consequences.


Assuntos
Biomarcadores/urina , Pão , Poeira/análise , Farinha/análise , Manipulação de Alimentos , Micotoxinas/análise , Exposição Ocupacional/análise , Adulto , Monitoramento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Portugal , Medição de Risco , Adulto Jovem
4.
J Pharm Biomed Anal ; 144: 59-89, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28292560

RESUMO

The review deals with the application of the NMR advanced Mosher's method for the assignment of the absolute configuration to plant and fungal metabolites belonging to different classes of natural compounds. The structural and stereochemical characterization of these naturally occurring metabolites, as well as their biological properties as possible drugs or agrochemicals is reviewed. The importance of the absolute and relative stereochemistry on their biological properties is also highlighted. Successes and failures of application of the advanced Mosher's method are reported.


Assuntos
Fungos/metabolismo , Espectroscopia de Ressonância Magnética , Estereoisomerismo
5.
Forensic Sci Int ; 262: 173-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27022860

RESUMO

Fungi colonizing cadavers are capable of drug metabolism and may thus change the metabolite pattern or concentration of drugs in forensic postmortem samples. The purpose of this study was to check for the presence of such changes by searching fungi-specific metabolites of four model drugs (amitriptyline, metoprolol, mirtazapine, and zolpidem) in decomposed postmortem blood samples from 33 cases involving these drugs. After isolation and identification of fungal strains present in the samples, each isolate was incubated in Sabouraud medium at 25°C for up to 120h with each model drug. One part of the supernatants was directly analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), another after liquid-liquid extraction with chlorobutane and concentration. From 21 out of 33 decomposed postmortem blood samples (64%) a total of 30 different strains could be isolated, one from the class of Ascomycete and the rest belonging to 15 species from 8 different genera (number of species): Aspergillus (2), Botrytis (1), Candida (8), Fusarium (1), Mucor (1), Penicillium (1), and Rodothorula (1). In the in vitro studies, these microorganisms were found capable of N-demethylation and N-oxidation of amitriptyline and mirtazapine, O-demethylation followed by side chain oxidation of metoprolol as well as hydroxylation of all four-model drugs. In two of the postmortem blood samples, from which the fungi Aspergillus jensenii, Candida parapsilosis. and Mucor circinelloides had been isolated, a fungi-specific hydroxy zolpidem metabolite was detected. The presence of this metabolite in postmortem samples likely indicates postmortem fungal biodegradation.


Assuntos
Amitriptilina/sangue , Fungos/isolamento & purificação , Metoprolol/sangue , Mianserina/análogos & derivados , Mudanças Depois da Morte , Piridinas/sangue , Idoso , Biotransformação , Fármacos Cardiovasculares/sangue , Fármacos do Sistema Nervoso Central/sangue , Cromatografia Líquida , Feminino , Humanos , Masculino , Mianserina/sangue , Pessoa de Meia-Idade , Mirtazapina , Espectrometria de Massas em Tandem , Zolpidem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa