RESUMO
Diffusion magnetic resonance imaging (MRI) exhibits contrast that identifies macro- and microstructural changes in neurodegenerative diseases. Previous studies have shown that MR diffusion tensor imaging (DTI) can observe changes in spinal cord white matter in animals and humans affected with symptomatic amyotrophic lateral sclerosis (ALS). The goal of this preclinical work was to investigate the sensitivity of DTI for the detection of signs of tissue damage before symptoms appear. High-field MRI data were acquired using a 9.4-T animal scanner to examine the spinal cord of an ALS mouse model at pre- and post-symptomatic stages (days 80 and 120, respectively). The MRI results were validated using yellow fluorescent protein (YFP) via optical microscopy of spinal cord tissue slices collected from the YFP,G93A-SOD1 mouse strain. DTI maps of diffusion-weighted imaging (DWI) signal intensity, mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) were computed for axial slices of the lumbar region of the spinal cord. Significant changes were observed in FA (6.7% decrease, p < 0.01), AD (19.5% decrease, p < 0.01) and RD (16.1% increase, p < 0.001) at postnatal day 80 (P80). These differences were correlated with changes in axonal fluorescence intensity and membrane cellular markers. This study demonstrates the value of DTI as a potential tool to detect the underlying pathological progression associated with ALS, and may accelerate the discovery of therapeutic strategies for patients with this disease.
Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Axônios/patologia , Imagem de Difusão por Ressonância Magnética , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Animais , Anisotropia , Modelos Animais de Doenças , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca(2+) overload have mostly focused on Ca(2+) influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca(2+) channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93âAla substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca(2+) currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca(2+) currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca(2+) current mediated by L-type Ca(2+) channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca(2+) currents may result from upregulation of Ca(2+) channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca(2+) channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca(2+) channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca(2+) currents and PCCa current could contribute to early pathogenesis of ALS.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Camundongos Transgênicos , Neurônios Motores/patologia , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismoRESUMO
Numerous reports have demonstrated the breakdown of the blood-CNS barrier (B-CNS-B) in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Re-establishing barrier integrity in the CNS is critical to prevent further motor neuron degeneration from harmful components in systemic circulation. Potential therapeutic strategies for repairing the B-CNS-B may be achieved by the replacement of damaged endothelial cells (ECs) via stem cell administration or enhancement of endogenous EC survival through the delivery of bioactive particles secreted by stem cells. These cellular and noncellular approaches are thoroughly discussed in the present review. Specific attention is given to certain stem cell types for EC replacement. Also, various nanoparticles secreted by stem cells as well as other biomolecules are elucidated as promising agents for endogenous EC repair. Although the noted in vitro and in vivo studies show the feasibility of the proposed therapeutic approaches to the repair of the B-CNS-B in ALS, further investigation is needed prior to clinical transition.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Células Endoteliais/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Motores/metabolismo , Células-Tronco/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) is a multifactorial disease with one of these factors being an impaired blood-spinal cord barrier (BSCB). In order to block harmful components in systemic circulation from accessing the CNS, barrier damage needs alleviation. Recently, we found that symptomatic ALS animals treated with intravenously delivered human bone marrow-derived CD34+ (hBM34+) cells or endothelial progenitor cells (hBMEPCs) showed delayed disease progression for 4 weeks post-transplant via BSCB repair. However, despite noted benefits from transplanted human bone marrow-derived stem cells, long-term effects of transplanted cells in ALS mice remain undetermined. This study aimed to determine prolonged effects of single equal doses of hBM34+ cells and hBMEPCs systemically transplanted into symptomatic G93A SOD1 mice on behavioral disease outcomes and mouse lifespan. Results showed that transplanted hBMEPCs better ameliorated disease behavioral outcomes than hBM34 + cells until near end-stage disease and significantly increased lifespan vs. media-treated mice. These results provide important evidence that transplanted hBMEPCs prolonged functional benefits and extended survival of ALS mice, potentially by repairing the damaged BSCB. However, due to modestly increased lifespan of hBMEPC-treated mice, repeated cell transplants into symptomatic ALS mice may more effectively delay motor function deficit and extend lifespan by continuous reparative processes via replacement of damaged endothelial cells during disease progression.
RESUMO
Convincing evidence of blood-spinal cord barrier (BSCB) alterations has been demonstrated in amyotrophic lateral sclerosis (ALS) and barrier repair is imperative to prevent motor neuron dysfunction. We showed benefits of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These gains likely occurred by replacement of damaged endothelial cells, prolonging motor neuron survival. However, additional investigations are needed to confirm the effects of administered cells on integrity of the microvascular endothelium. The aim of this study was to determine tight junction protein levels, capillary pericyte coverage, microvascular basement membrane, and endothelial filamentous actin (F-actin) status in spinal cord capillaries of G93A SOD1 mutant mice treated with human bone marrow-derived stem cells. Tight junction proteins were detected in the spinal cords of cell-treated versus non-treated mice via Western blotting at four weeks after transplant. Capillary pericyte, basement membrane laminin, and endothelial F-actin magnitudes were determined in cervical/lumbar spinal cord tissues in ALS mice, including controls, by immunohistochemistry and fluorescent staining. Results showed that cell-treated versus media-treated ALS mice substantially increased tight junction protein levels, capillary pericyte coverage, basement membrane laminin immunoexpressions, and endothelial cytoskeletal F-actin fluorescent expressions. The greatest benefits were detected in mice receiving hBM-EPCs versus hBM34+ cells. These study results support treatment with a specific cell type derived from human bone marrow toward BSCB repair in ALS. Thus, hBM-EPCs may be advanced for clinical applications as a cell-specific approach for ALS therapy through restored barrier integrity.
Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/terapia , Animais , Medula Óssea , Modelos Animais de Doenças , Células Endoteliais , Endotélio , Humanos , Camundongos , Camundongos Transgênicos , Medula Espinal , Superóxido Dismutase/genéticaRESUMO
Repairing the altered blood-CNS-barrier in amyotrophic lateral sclerosis (ALS) is imperative to prevent entry of detrimental blood-borne substances into the CNS. Cell transplantation with the goal of replacing damaged endothelial cells (ECs) may be a new therapeutic approach for barrier restoration. We showed positive effects of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These benefits mainly occurred by administered cells engraftment into vascular walls in ALS mice; however, additional studies are needed to confirm cell engraftment within capillaries. The aim of this investigation was to determine the presence of human DNA within microvascular ECs isolated from the CNS tissues of G93A SOD1 mutant mice treated with human bone marrow-derived stem cells. The CNS tissues were obtained from previously cell-treated and media-treated G93A mice at 17 weeks of age. Real-time PCR (RT-PCR) assay for detection of human DNA was performed in ECs isolated from mouse CNS tissue. Viability of these ECs was determined using the LIVE/DEAD viability/cytotoxicity assay. Results showed appropriate EC isolation as verified by immunoexpression of endothelial cell marker. Human DNA was detected in isolated ECs from cell-treated mice with greater concentrations in mice receiving hBM-EPCs vs. hBM34+ cells. Also, higher numbers of live ECs were determined in mice treated with hBM-EPCs vs. hBM34+ cells or media-injection. Results revealed that transplanted human cells engrafted into mouse capillary walls and efficaciously maintained endothelium function. These study results support our previous findings showing that intravenous administration of hBM-EPCs into symptomatic ALS mice was more beneficial than hBM34+ cell treatment in repair of barrier integrity, likely due to replacement of damaged ECs in mouse CNS vessels. Based on this evidence, hBM-EPCs may be advanced as a cell-specific approach for ALS therapy through restored CNS barrier integrity.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
OBJECTIVE: Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS: Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS: Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS: Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.
RESUMO
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the corticospinal tract and leading to motor neuron death. According to a recent study, magnetic resonance imaging-visible changes suggestive of neurodegeneration seem absent in the motor cortex of G93A-SOD1 ALS mice. However, it has not yet been ascertained whether the cortical neural activity is intact, or alterations are present, perhaps even from an early stage. Here, cortical neurons from this model were isolated at post-natal day 1 and cultured on multielectrode arrays. Their activity was studied with a comprehensive pool of neurophysiological analyses probing excitability, criticality and network architecture, alongside immunocytochemistry and molecular investigations. Significant hyperexcitability was visible through increased network firing rate and bursting, whereas topological changes in the synchronization patterns were apparently absent. The number of dendritic spines was increased, accompanied by elevated transcriptional levels of the DLG4 gene, NMDA receptor 1 and the early pro-apoptotic APAF1 gene. The extracellular Na+, Ca2+, K+ and Cl- concentrations were elevated, pointing to perturbations in the culture micro-environment. Our findings highlight remarkable early changes in ALS cortical neuron activity and physiology. These changes suggest that the causative factors of hyperexcitability and associated toxicity could become established much earlier than the appearance of disease symptoms, with implications for the discovery of new hypothetical therapeutic targets.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Morte Celular/fisiologia , Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Superóxido Dismutase/metabolismoRESUMO
Extensive pathological evidence indicates that axonal degeneration represents an early and critical event in amyotrophic lateral sclerosis (ALS). Unfortunately, few MRI studies have focused in the early detection of white matter (WM) alterations in the spinal cord region. To unveil these WM changes, we performed high resolution diffusion tensor imaging (DTI) and correlated the results with histological analysis of adjacent slices taken from the spinal cords of presymptomatic mice. The DTI studies demonstrated a significant reduction in fractional anisotropy (FA) as well as axial diffusivities (AD) and an increase in radial diffusivity (RD), predominantly at lower segments of the spinal cord. Increases in FA and a reduction in AD and RD were observed in spinal cord (SC) gray matter (GM). Diffusion changes are associated with early and progressive alterations in axonal connectivity following a distal to proximal progression. Histological data tagging neuronal, axonal and glial cell markers demonstrated presymptomatic alterations in spinal cord WM and GM. This study demonstrates that DTI methods are optimal preclinical imaging tools to detect structural anomalies in WM and GM spinal cord during early stages of the disease.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Axônios/patologia , Imagem de Tensor de Difusão , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/genética , Animais , Anisotropia , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Medula Espinal/diagnóstico por imagem , Superóxido Dismutase/genéticaRESUMO
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a disease characterized by a progressive degeneration of motor neurons leading to paralysis. Our previous MRI diffusion tensor imaging studies detected early white matter changes in the spinal cords of mice carrying the G93A-SOD1 mutation. Here, we extend those studies using ultra-high field MRI (17.6 T) and fluorescent microscopy to investigate the appearance of early structural and connectivity changes in the spinal cords of ALS mice. METHODS: The spinal cords from presymptomatic and symptomatic mice (80 to 120 days of age) were scanned (ex-vivo) using diffusion-weighted MRI. The fractional anisotropy (FA), axial (AD) and radial (RD) diffusivities were calculated for axial slices from the thoracic, cervical and lumbar regions of the spinal cords. The diffusion parameters were compared with fluorescence microscopy and membrane cellular markers from the same tissue regions. RESULTS: At early stages of the disease (day 80) in the lumbar region, we found, a 19% decrease in FA, a 9% decrease in AD and a 35% increase in RD. Similar changes were observed in cervical and thoracic spinal cord regions. Differences between control and ALS mice groups at the symptomatic stages (day 120) were larger. Quantitative fluorescence microscopy at 80 days, demonstrated a 22% reduction in axonal area and a 22% increase in axonal density. Tractography and quantitative connectome analyses measured by edge weights showed a 52% decrease in the lumbar regions of the spinal cords of this ALS mice group. A significant increase in ADC (23.3%) in the ALS mice group was related to an increase in aquaporin markers. CONCLUSIONS: These findings suggest that the combination of ultra-high field diffusion MRI with fluorescent ALS mice reporters is a useful approach to detect and characterize presymptomatic white matter micro-ultrastructural changes and axonal connectivity anomalies in ALS.
RESUMO
Accumulating evidence shows alterations in the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) in ALS patients and in animal models of disease, mainly by endothelial cell (EC) damage. Repair of the altered barrier in the CNS by replacement of ECs via cell transplantation may be a new therapeutic approach for ALS. Recently, we demonstrated positive effects towards BSCB repair by intravenous administration of unmodified human bone marrow CD34+ (hBM34+) cells at different doses into symptomatic ALS mice. However, particular benefits of these transplanted cells on microvascular integrity in symptomatic ALS mice are still unclear. The aim of the present study was to determine the structural and functional spinal cord capillary integrity in symptomatic ALS mice after intravenous administration of hBM34+ cells. The G93A mice at 13â¯weeks of age intravenously received one of three different cell doses (5â¯×â¯104, 5â¯×â¯105, or 1â¯×â¯106) and were euthanized at 17â¯weeks of age (4â¯weeks post-transplant). Control groups were media-treated and non-carrier mutant SOD1 gene mice. Capillary ultrastructural (electron microscopy), immunohistochemical (laminin and HuNu), and histological (myelin and capillary density) analyses were performed in the cervical and lumbar spinal cords. Capillary permeability in the spinal cords was determined by Evans Blue (EB) injection. Results showed significant restoration of ultrastructural capillary morphology, improvement of basement membrane integrity, enhancement of axonal myelin coherence, and stabilization of capillary density in the spinal cords primarily of ALS mice receiving the high dose of 1â¯×â¯106 cells. Moreover, substantial reduction of parenchymal EB levels was determined in these mice, confirming our previous results on capillary permeability. Additionally, transplanted cells were detected in blood smears of sacrificed late symptomatic mice by HuNu marker. Altogether, these results provide novel evidence that unmodified bone marrow hematopoietic stem cell treatment at optimal dose might be beneficial for structural and functional repair of the damaged BSCB in advanced stage of ALS, potentially resulting in delayed disease progression by increased motor neuron survival.
Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Barreira Hematoencefálica/fisiopatologia , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Regeneração da Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Esclerose Lateral Amiotrófica/induzido quimicamente , Animais , Antígenos CD34/metabolismo , Barreira Hematoencefálica/ultraestrutura , Permeabilidade Capilar , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Medula Espinal/ultraestrutura , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Resultado do TratamentoRESUMO
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron degeneration in the motor cortex, brainstem and spinal cord. It is generally accepted that ALS is caused by death of motor neurons, however the exact temporal cascade of degenerative processes is not yet completely known. To identify the early pathological changes in spinal cord of G93A-SOD1 ALS mice we performed a comprehensive longitudinal analysis employing diffusion-tensor magnetic resonance imaging alongside histology and electron microscopy, in parallel with peripheral nerve histology. We showed the gradient of degeneration appearance in spinal cord white and gray matter, starting earliest in the ventral white matter, due to a cascade of pathological events including axon dysfunction and mitochondrial changes. Notably, we found that even the main sensory regions are affected by the neurodegenerative process at symptomatic disease phase. Overall our results attest the applicability of DTI in determining disease progression in ALS mice. These findings suggest that DTI could be potentially adapted in humans to aid the assessment of ALS progression and eventually the evaluation of treatment efficacy.