Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37527657

RESUMO

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Assuntos
Astrócitos , Fagocitose , Estresse Psicológico , Animais , Criança , Humanos , Camundongos , Astrócitos/metabolismo , c-Mer Tirosina Quinase/genética , Hormônios/metabolismo , Sinapses/metabolismo , Estresse Psicológico/metabolismo
2.
Neurochem Res ; 49(5): 1347-1358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353896

RESUMO

Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.


Assuntos
Fator de Crescimento Epidérmico , Neurônios GABAérgicos , Neocórtex , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Neurônios GABAérgicos/metabolismo , Metaloproteinases da Matriz/metabolismo , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Roedores/metabolismo
3.
J Neurochem ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38069511

RESUMO

Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear. NOX4 is mainly expressed on intracellular membranes, such as the ER and mitochondrial membranes, and its sole function is to produce ROS. Whether NOX4 is activated during MT development and the mechanisms underlying the association between NOX4 and ER stress during this process still need to be confirmed. In our study, we used the classic morphine-tolerant rat model and evaluated the analgesic effect of intrathecally injected morphine through a hot water tail-flick assay. Our research demonstrated for the first time that chronic morphine administration upregulates NOX4 expression in the spinal cord by activating three ER stress sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), subsequently leading to the activation of microtubule-associated protein 1 light chain 3 b (LC3B) and P62 (a well-known autophagy marker) in GABAergic neurons. Our results may suggest that regulating NOX4 and the key mechanism underlying ER stress or autophagy may be a promising strategy to treat and prevent MT development.

4.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069205

RESUMO

Clinical imaging studies have revealed that the hypothalamus is activated in migraine patients prior to the onset of and during headache and have also shown that the hypothalamus has increased functional connectivity with the spinal trigeminal nucleus. The dopaminergic system of the hypothalamus plays an important role, and the dopamine-rich A11 nucleus may play an important role in migraine pathogenesis. We used intraperitoneal injections of glyceryl trinitrate to establish a model of acute migraine attack and chronicity in mice, which was verified by photophobia experiments and von Frey experiments. We explored the A11 nucleus and its downstream pathway using immunohistochemical staining and neuronal tracing techniques. During acute migraine attack and chronification, c-fos expression in GABAergic neurons in the A11 nucleus was significantly increased, and inhibition of DA neurons was achieved by binding to GABA A-type receptors on the surface of dopaminergic neurons in the A11 nucleus. However, the expression of tyrosine hydroxylase and glutamic acid decarboxylase proteins in the A11 nucleus of the hypothalamus did not change significantly. Specific destruction of dopaminergic neurons in the A11 nucleus of mice resulted in severe nociceptive sensitization and photophobic behavior. The expression levels of the D1 dopamine receptor and D2 dopamine receptor in the caudal part of the spinal trigeminal nucleus candalis of the chronic migraine model were increased. Skin nociceptive sensitization of mice was slowed by activation of the D2 dopamine receptor in SP5C, and activation of the D1 dopamine receptor reversed this behavioral change. GABAergic neurons in the A11 nucleus were activated and exerted postsynaptic inhibitory effects, which led to a decrease in the amount of DA secreted by the A11 nucleus in the spinal trigeminal nucleus candalis. The reduced DA bound preferentially to the D2 dopamine receptor, thus exerting a defensive effect against headache.


Assuntos
Dopamina , Transtornos de Enxaqueca , Camundongos , Humanos , Animais , Dopamina/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Hipotálamo/metabolismo , Receptores de Dopamina D1/metabolismo , Transtornos de Enxaqueca/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cefaleia/metabolismo
5.
Dev Growth Differ ; 64(9): 474-485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36398337

RESUMO

Urodele amphibians have the ability to regenerate several organs, including the brain. For this reason, the research on neurogenesis in these species after ablation of some parts of the brain has markedly progressed. However, detailed information on the characteristics and fate of proliferated cells as well as the function of newly generated neurons under normal conditions is still limited. In this study, we focused on investigating the proliferative and neurogenic zones as well as the fate of proliferated cells in the adult brain of the Japanese red-bellied newt to clarify the significance of neurogenesis in adulthood. We found that the proximal region of the lateral ventricles in the telencephalon and the preoptic area in the diencephalon were the main sites for continuous cell proliferation in the adult brain. Furthermore, we characterized proliferative cells and analyzed neurogenesis through a combination of 5-ethynyl-2'-deoxyuridine (EdU) labeling and immunohistochemistry using antibodies against the stem cell marker Sox2 and neuronal marker NeuN. Twenty-four hours after EdU injection, most of the EdU-positive cells were Sox2-immunopositive, whereas, EdU-positive signals and NeuN-immunoreactivities were not colocalized. Two months after EdU injection, the colocalization ratio of EdU-positive signals with Sox2-immunoreactivities decreased to approximately 10%, whereas the ratio of colocalization of EdU-positive signals with NeuN-immunoreactivities increased to approximately 60%. Furthermore, a portion of the EdU-incorporated cells developed into γ-aminobutyric acid-producing cells, which are assumed to function as interneurons. On the basis of these results, the significance of newly generated neurons was discussed with special reference to their reproductive behavior.


Assuntos
Neurônios , Telencéfalo , Animais , Neurônios/fisiologia , Neurogênese/fisiologia , Salamandridae , Proliferação de Células
6.
Neurochem Res ; 47(9): 2591-2601, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34196888

RESUMO

The mammalian brain contains multiple types of neuronal cells with complex assemblies and distinct structural and functional properties encoded by divergent gene programs. There is increasing evidence that alternative splicing (AS) plays fundamental roles in transcriptomic diversity and specifying synaptic properties of each neuronal cell type. However, the mechanisms underlying AS regulation and whether it controls synapse formation across GABAergic interneurons have not been fully elucidated. Here we show the differential expression levels of Sam68-like molecule 2 (SLM2), a major splicing regulator of neurexin (NRX), in GABAergic neuronal subtypes and its contribution to GABAergic synapse specification. Cortical SLM2 is strongly expressed not only in excitatory neurons but also in a subpopulation of GABAergic interneurons, especially in VIP-positive neurons that are originated from late-born caudal ganglionic eminence (GE)- derived cells. Using artificial synapse formation assay, we found that GE containing cortices form a strong synapse with LRRTM2, a trans-synaptic receptor of the alternatively spliced segment 4 (AS4)(-) of NRX. SLM2 knock-down reduced the NRX AS4(-) isoform expression and hence weaken LRRTM2-induced synapse formation. The addition of NRX AS4(-) was sufficient to rescue the synaptic formation by LRRTM2 in SLM2 knock-down neurons. Thus, our findings suggest a novel function of SLM2 in modifying network formation of a specific population of GABAergic interneurons and contribute to a better understanding of the roles AS plays in regulating synapse specificity and neuronal molecular diversity.


Assuntos
Processamento Alternativo , Neurônios GABAérgicos , Animais , Interneurônios , Mamíferos , Neurogênese , Sinapses/fisiologia
7.
Neuroendocrinology ; 112(7): 649-665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34592740

RESUMO

INTRODUCTION: Menopausal hot flashes are related to hypothalamic preoptic area (POA) dysfunction. Thermosensitive transient receptor potential channels (ThermoTRPs) are involved in temperature sensing and regulation of thermosensitive neurons (TSNs) in the POA. Whether ThermoTRP-TSNs in the POA, particularly the non-noxious thermoreceptor, transient receptor potential melastatin 2 (TRPM2), are involved in the occurrence of hot flashes is still unclear. METHODS: Twenty wild-type and 50 Trpm2-Cre adult female mice were randomly divided into sham (SHAM) and ovariectomy (OVX) groups. In the POA, ERα, ERß, GPR30, TRPA1, TRPM8, TRPM2, and TRPV1 expression was detected by Western blot or/and quantitative real-time polymerase chain reaction and the number of TSNs expressing TRPM2 (TRPM2-TSNs) by immunofluorescence. Before and after TRPM2-TSN activation/inhibition, back (BST) and tail skin temperature (TST) and the proportion of glutamatergic and GABAergic neurons among TRPM2-TSNs were recorded. RESULTS: Compared with SHAM, the expression of ERα, ERß, TRPM2, and TRPM8 in the POA of the OVX group decreased, with a significantly larger change range for TRPM2 than TRPM8. In addition, the number of TRPM2-TSNs showing TRPA1, TRPM8, and TRPV1 expression in the OVX group decreased, and the proportion of glutamatergic and GABAergic neurons in TRPM2-TSNs decreased and increased, respectively. Meanwhile, BST and TST increased. After activating or inhibiting TRPM2-TSNs, the proportions of glutamatergic and GABAergic neurons in TRPM2-TSNs changed, along with the BST and TST. CONCLUSION: In menopause, the abnormal quantity and function of TRPM2-TSNs in the POA is key for the development of hot flashes, characterized by an imbalance in heat dissipation and production due to the corresponding imbalance in glutamatergic and GABAergic neurons.


Assuntos
Canais de Cátion TRPM , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Fogachos/metabolismo , Menopausa , Camundongos , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Canais de Cátion TRPM/metabolismo
8.
BMC Biol ; 19(1): 144, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301239

RESUMO

BACKGROUND: Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking. RESULTS: Here, we described a novel computational framework, SAPAS, that utilizes 3'-tag-based scRNA-seq data to identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and brain traits in altered 3' UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different subpopulations that are from different laminar positions. CONCLUSIONS: We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our understanding of cellular heterogeneity.


Assuntos
Poliadenilação , Análise de Célula Única , Regiões 3' não Traduzidas , Neurônios GABAérgicos , Humanos , Análise de Sequência de RNA , Quinases Ativadas por p21
9.
J Neurosci ; 40(4): 825-842, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31801810

RESUMO

The extracellular glycan polysialic acid linked to neural cell adhesion molecule (PSA-NCAM) is principally expressed in the developing brain and the adult neurogenic regions. Although colocalization of PSA-NCAM with cholecystokinin (CCK) was found in the adult brain, the role of PSA-NCAM remains unclear. In this study, we aimed to elucidate the functional significance of PSA-NCAM in the CA1 region of the male mouse hippocampus. Combined fluorescence in situ hybridization and immunohistochemistry showed that few vesicular glutamate transporter 3-negative/CCK-positive (VGluT3-/CCK+) cells were colocalized with PSA-NCAM, but most of the VGluT3+/CCK+ cells were colocalized with PSA-NCAM. The somata of PSA-NCAM+/CCK+ cells were highly innervated by serotonergic boutons than those of PSA-NCAM-/CCK+ cells. The expression ratios of 5-HT3A receptors and p11, a serotonin receptor-interacting protein, were higher in PSA-NCAM+/CCK+ cells than in PSA-NCAM-/CCK+ cells. Pharmacological digestion of PSA-NCAM impaired the efficacy of antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, but not the efficacy of benzodiazepine anxiolytic diazepam. A Western blot showed that restraint stress decreased the expressions of p11 and mature brain-derived neurotrophic factor (BDNF), and FLX increased them. Interestingly, the FLX-induced elevation of expression of p11, but not mature BDNF, was impaired by the digestion of PSA-NCAM. Quantitative reverse transcription-polymerase chain reaction showed that restraint stress reduced the expression of polysialyltransferase ST8Sia IV and FLX elevated it. Collectively, PSA-NCAM colocalized with VGluT3+/CCK+ cells in the CA1 region of the hippocampus may play a unique role in the regulation of antidepressant efficacy via the serotonergic pathway.SIGNIFICANCE STATEMENT Polysialic acid (PSA) is composed of eight or more α2,8-linked sialic acids. Here, we examined the functional significance of polysialic acid linked to the neural cell adhesion molecule (PSA-NCAM) in the adult mouse hippocampus. Few vesicular glutamate transporter 3-negative/cholecystokinin-positive (VGluT3-/CCK+) cells were colocalized with PSA-NCAM, but most of the VGluT3+/CCK+ cells were colocalized with PSA-NCAM. The expression ratios of 5-HT3A receptors and p11, a serotonin receptor-interacting protein, were higher in PSA-NCAM+/CCK+ cells than in PSA-NCAM-/CCK+ cells. The efficacy of antidepressants, but not anxiolytics, was impaired by the digestion of PSA-NCAM. The antidepressant-induced increase in p11 expression was inhibited following PSA-NCAM digestion. We hence hypothesize that PSA-NCAM colocalized with VGluT3+/CCK+ cells may play a unique role in regulating antidepressant efficacy.


Assuntos
Antidepressivos/farmacologia , Colecistocinina/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
10.
FASEB J ; 34(12): 16567-16580, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094857

RESUMO

The growth and differentiation of neurons are critical events in the establishment of proper neuron connectivity and function. Planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for neuronal differentiation in vivo. The Wnt/Ca2+ signaling pathway is crucial for cancer development, arousing inflammatory responses, and neurodegeneration. We analyzed the expression patterns and RNAi phenotypes for members of the Wnt/Ca2+ signaling pathway in the planarian, Dugesia japonica. The expression of DjWnt5a, DjPLC-ß, DjCamKII, and DjCaln during regeneration was surprisingly similar and revealing in the regenerated brain. RNAi knockdown of DjWnt5a, DjPLC-ß, DjCamKII, and DjCaln led to defects in regenerated brains including brain partial deletions, incompact phenotypes at the posterior of the new brain, and lateral branches, which could not regenerate. Furthermore, the expressions of GAD and the number of GABAergic neurons decreased. Together, these results suggest that the Wnt/Ca2+ signaling pathway is required for GABAergic neuron regeneration.


Assuntos
Cálcio/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Planárias/metabolismo , Planárias/fisiologia , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia
11.
Addict Biol ; 26(6): e13052, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33969586

RESUMO

The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine (DA) neurons, has emerged as an integral player in both rewarding and nociceptive responses. While previous studies have demonstrated that acupuncture modulates DA transmission in the mesolimbic reward system originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc) and can reduce drug self-administration, the central links between peripheral acupuncture signals and brain reward systems are not well-characterized. Thus, we hypothesised that acupuncture would elicit inhibitory signals from RMTg neurons to brain reward systems. Acupuncture reduced acute cocaine-induced locomotor activity and DA release in a point-specific manner, which was blocked by optogenetic silencing or chemical lesion of the RMTg. The acupuncture effect was mimicked by chemical activation of the RMTg. Acupuncture activated RMTg GABA neurons. In addition, the inhibitory effects of acupuncture on acute cocaine-induced locomotor activity were prevented by electrolytic lesions of the lateral habenula (LHb) or fasciculus retroflexus (FR), areas known to project to the RMTg. These findings suggest that acupuncture recruits the RMTg to reduce the psychomotor responses enhanced by acute cocaine.


Assuntos
Terapia por Acupuntura/métodos , Cocaína/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Tegmento Mesencefálico/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Recompensa , Área Tegmentar Ventral/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1076-1087, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34137445

RESUMO

Propofol is the most commonly used intravenous anesthetic worldwide. It can induce loss of consciousness prior to the occurrence of severe respiratory suppression, which is also a pharmacodynamic feature of all general anesthetics. However, the neural mechanisms underlying this natural phenomenon are controversial and highly related to patient safety. In the present study, we demonstrated that the pharmacodynamic effects of propofol (50 and 100 µM) on suppression of consciousness-related excitatory postsynaptic currents in the medial prefrontal cortex (mPFC) and centromedian nucleus of the thalamus (CMT) were lower than those in the kernel respiratory rhythmogenesis nucleus pre-Bötzinger complex (PrBo). Furthermore, we unexpectedly found that the GABAA receptor ß3 subunit is the key target for propofol's action and that it is mutually and exclusively expressed in GABAergic neurons. It is also more abundant in the mPFC and CMT, but mainly co-localized with GABAergic neurons in the PrBo. As a result, the differentiated expression pattern should mediate more neuron suppression through the activation of GABAergic neurons in the mPFC and CMT at low doses of propofol (50 µM). However, PrBo GABAergic neurons were only activated by propofol at a high dose (100 µM). These results highlight the detailed pharmacodynamic effects of propofol on consciousness-related and respiration-related nuclei and provide the distinct interaction mechanism between the ß3 subunit and GABAergic neurons in mediating the suppression of consciousness compared to the inhibition of respiration.


Assuntos
Neurônios GABAérgicos/metabolismo , Núcleos Intralaminares do Tálamo , Córtex Pré-Frontal , Propofol/farmacologia , Receptores de GABA-A/metabolismo , Mecânica Respiratória/efeitos dos fármacos , Inconsciência , Animais , Núcleos Intralaminares do Tálamo/metabolismo , Núcleos Intralaminares do Tálamo/fisiopatologia , Masculino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Ratos Sprague-Dawley , Inconsciência/induzido quimicamente , Inconsciência/metabolismo , Inconsciência/fisiopatologia
13.
J Neurosci ; 39(23): 4448-4460, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936241

RESUMO

Striatal output pathways are known to play a crucial role in the control of movement. One possible component for shaping the synaptic output of striatal neuron is the glutamatergic input that originates from cortex and thalamus. Although reports focusing on quantifying glutamatergic-induced morphological changes in striatum exist, the role of glutamatergic input in regulating striatal function remains poorly understood. Using primary neurons from newborn mice of either sex in a reduced two-neuron microcircuit culture system, we examined whether glutamatergic input modulates the output of striatal neurons. We found that glutamatergic input enhanced striatal inhibition in vitro With a glutamatergic partner from either cortex or thalamus, we attributed this potentiation to an increase in the size of quantal IPSC, suggesting a strengthening of the postsynaptic response to GABAergic signaling. Additionally, a differential effect of cortical and thalamic innervation onto striatal GABAergic neurons output was revealed. We observed that cortical, but not thalamic input, enhanced the number of releasable GABAergic synaptic vesicles and morphological synapses. Importantly, these alterations were reverted by blockade of neuronal activity and glutamate receptors, as well as disruption of BDNF-TrkB signaling. Together, our data indicate, for first time, that GABAergic synapse formation in corticostriatal pairs depends on two parallel, but potentially intersecting, signaling pathways that involve glutamate receptor activation in striatal neurons, as well as BDNF signaling. Understanding how cortical and thalamic inputs refine striatal output will pave the way toward dissecting basal ganglia activity in both physiological and pathological conditions.SIGNIFICANCE STATEMENT Striatal GABAergic microcircuits are critical for motor function. However, the mechanisms controlling striatal output, particularly at the level of synaptic strength, are unclear. Using two-neuron culture system, we quantified the synaptic output of individual striatal GABAergic neurons paired with a glutamatergic partner and studied the influence of the excitatory connections that are known to be interregionally formed in vivo We found that glutamatergic input potentiated striatal inhibitory output, potentially involving an increased feedback and/or feedforward inhibition. Moreover, distinct components of glutamatergic innervation, such as firing activity or release of neurotrophic factors were shown to be required for the glutamatergic-induced phenotype. Investigation, therefore, of two-neuron in vitro microcircuits could be a powerful tool to explore synaptic mechanisms or disease pathophysiology.


Assuntos
Corpo Estriado/fisiologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Anticorpos Neutralizantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Corpo Estriado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas Tirosina Quinases/fisiologia , Quinoxalinas/farmacologia , Proteínas Recombinantes/farmacologia , Vesículas Sinápticas/fisiologia , Tetrodotoxina/farmacologia , Tálamo/citologia
14.
J Pharmacol Sci ; 142(3): 83-92, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31859144

RESUMO

Little is known about how propofol modulates the spike firing correlation between excitatory and inhibitory cortical neurons in vivo. We performed extracellular unit recordings from rat insular cortical neurons, and classified neurons with high spontaneous firing frequency, bursting, and short spike width as high frequency with bursting neurons (HFB; pseudo fast-spiking GABAergic neurons) and other neurons with low spontaneous firing frequency and no bursting were classified as non-HFB. Intravenous administration of propofol (12 mg/kg) from the caudal vein reduced the firing frequency of HFB, whereas propofol initially increased (within 30 s) and then decreased the firing frequency of non-HFB. Both HFB and non-HFB spontaneous action potential discharge was depressed by propofol with a greater depression seen for HFB. Cross-correlograms and auto-correlograms demonstrated propofol-induced increases in the ratio of the peak, which were mostly observed around 0-10 ms divided to baseline amplitude. The analysis of interspike intervals showed a decrease in spike firing at 20-100 Hz and a relative increase at 8-15 Hz. These results suggest that propofol induces a larger suppression of firing frequency in HFB and an enhancement of synchronized neural activities in the α frequency band in the cerebral cortex (192 words).


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/efeitos dos fármacos , Propofol/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Neurônios GABAérgicos/fisiologia , Infusões Intravenosas , Masculino , Propofol/administração & dosagem , Ratos Wistar , Estimulação Química
15.
Cereb Cortex ; 29(4): 1414-1429, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490016

RESUMO

Parvalbumin (PV)-positive interneurons form dendritic gap junctions with one another, but the connectivity among gap junction-coupled dendrites remains uninvestigated in most neocortical areas. We visualized gap junctions in layer 4 of the mouse barrel cortex and examined their structural details. PV neurons were divided into 4 types based on the location of soma and dendrites within or outside barrels. Type 1 neurons that had soma and all dendrites inside a barrel, considered most specific to single vibrissa-derived signals, unexpectedly formed gap junctions only with other types but never with each other. Type 2 neurons inside a barrel elongated dendrites outward, forming gap junctions within a column that contained the home barrel. Type 3 neurons located outside barrels established connections with all types including Type 4 neurons that were confined inside the inter-barrel septa. The majority (33/38, 86.8%) of dendritic gap junctions were within 75 µm from at least 1 of 2 paired somata. All types received vesicular glutamate transporter 2-positive axon terminals preferentially on somata and proximal dendrites, indicating the involvement of all types in thalamocortical feedforward regulation in which proximal gap junctions may also participate. These structural organizations provide a new morphological basis for regulatory mechanisms in barrel cortex.


Assuntos
Dendritos/ultraestrutura , Sinapses Elétricas/ultraestrutura , Interneurônios/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Animais , Interneurônios/química , Masculino , Camundongos Endogâmicos C57BL , Parvalbuminas/análise , Terminações Pré-Sinápticas/ultraestrutura , Córtex Somatossensorial/química
16.
Alzheimers Dement ; 16(9): 1312-1329, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32543726

RESUMO

OBJECTIVE: To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND: Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS: Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS: This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aß), ß-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aß pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES: Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aß and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios GABAérgicos/patologia , Sintomas Prodrômicos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Humanos , Camundongos , Receptores de GABA/metabolismo , Fatores de Risco
17.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291789

RESUMO

BACKGROUND: Epilepsy is a chronic neurological disorder characterized by the recurrence of seizures. One-third of patients with epilepsy may not respond to antiseizure drugs. PURPOSE: We aimed to examine whether D-limonene, a cyclic monoterpene, exhibited any antiseizure activity in the pentylenetetrazole (PTZ)-induced kindling mouse model and in vitro. METHODS: PTZ kindling mouse model was established by administering PTZ (30 mg/kg) intraperitoneally to mice once every 48 h. We performed immunoblot blots, immunohistochemistry (IHC), and high-performance liquid chromatography (HPLC) analysis after the behavioral study. RESULTS: An acute injection of PTZ (60 mg/kg) induced seizure in mice, while pretreatment with D-limonene inhibited PTZ-induced seizure. Repeated administration of PTZ (30 mg/kg) increased the seizure score gradually in mice, which was reduced in D-limonene (10 mg/kg)-pretreated group. In addition, D-limonene treatment increased glutamate decarboxylase-67 (GAD-67) expression in the hippocampus. Axonal sprouting of hippocampal neurons after kindling was inhibited by D-limonene pretreatment. Moreover, D-limonene reduced the expression levels of Neuronal PAS Domain Protein 4 (Npas4)-induced by PTZ. Furthermore, the adenosine A2A antagonist SCH58261 and ZM241385 inhibited anticonvulsant activity and gamma-aminobutyric acid (GABA)ergic neurotransmission-induced by D-limonene. CONCLUSION: These results suggest that D-limonene exhibits anticonvulsant activity through modulation of adenosine A2A receptors on GABAergic neuronal function.


Assuntos
Neurônios GABAérgicos/metabolismo , Limoneno/farmacologia , Pentilenotetrazol/efeitos adversos , Receptor A2A de Adenosina/metabolismo , Convulsões/etiologia , Convulsões/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Convulsivantes/administração & dosagem , Convulsivantes/efeitos adversos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Pentilenotetrazol/administração & dosagem , Fosforilação , Ratos , Convulsões/fisiopatologia
18.
J Neurosci ; 37(37): 8952-8964, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28842411

RESUMO

GABAergic neurons in the inferior colliculus (IC) play a critical role in auditory information processing, yet their responses to sound are unknown. Here, we used optogenetic methods to characterize the response properties of GABAergic and presumed glutamatergic neurons to sound in the IC. We found that responses to pure tones of both inhibitory and excitatory classes of neurons were similar in their thresholds, response latencies, rate-level functions, and frequency tuning, but GABAergic neurons may have higher spontaneous firing rates. In contrast to their responses to pure tones, the inhibitory and excitatory neurons differed in their ability to follow amplitude modulations. The responses of both cell classes were affected by their location regardless of the cell type, especially in terms of their frequency tuning. These results show that the synaptic domain, a unique organization of local neural circuits in the IC, may interact with all types of neurons to produce their ultimate response to sound.SIGNIFICANCE STATEMENT Although the inferior colliculus (IC) in the auditory midbrain is composed of different types of neurons, little is known about how these specific types of neurons respond to sound. Here, for the first time, we characterized the response properties of GABAergic and glutamatergic neurons in the IC. Both classes of neurons had diverse response properties to tones but were overall similar, except for the spontaneous activity and their ability to follow amplitude-modulated sound. Both classes of neurons may compose a basic local circuit that is replicated throughout the IC. Within each local circuit, the inputs to the local circuit may have a greater influence in determining the response properties to sound than the specific neuron types.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Colículos Inferiores/fisiologia , Percepção da Altura Sonora/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Neurônios GABAérgicos/citologia , Colículos Inferiores/citologia , Masculino , Camundongos , Camundongos Transgênicos , Neurotransmissores/metabolismo , Optogenética
19.
Proc Natl Acad Sci U S A ; 112(3): E321-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561543

RESUMO

High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance.


Assuntos
Bainha de Mielina/metabolismo , Animais , Hipocampo/metabolismo , Camundongos , Ratos
20.
Stroke ; 48(12): 3375-3383, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29146880

RESUMO

BACKGROUND AND PURPOSE: Striatal GABAergic neuron is known as a key regulator in adult neurogenesis. However, the specific role of striatal GABAergic neuronal activity in the promotion of neurological recovery after ischemic stroke remains unknown. Here, we used optogenetic approach to investigate these effects and mechanism. METHODS: Laser stimulation was delivered via an implanted optical fiber to inhibit or activate the striatal GABAergic neurons in Gad2-Arch-GFP or Gad2-ChR2-tdTomato mice (n=80) 1 week after 60-minute transient middle cerebral artery occlusion. Neurological severity score, brain atrophy volume, microvessel density, and cell morphological changes were examined using immunohistochemistry. Gene expression and protein levels of related growth factors were further examined using real-time polymerase chain reaction and Western blotting. RESULTS: Inhibiting striatal GABAergic neuronal activity improved functional recovery, reduced brain atrophy volume, and prohibited cell death compared with the control (P<0.05). Microvessel density and bFGF (basic fibroblast growth factor) expression in the inhibition group were also increased (P<0.05). In contrast, activation of striatal GABAergic neurons resulted in adverse effects compared with the control (P<0.05). Using cocultures of GABAergic neurons, astrocytes, and endothelial cells, we further demonstrated that the photoinhibition of GABAergic neuronal activity could upregulate bFGF expression in endothelial cells, depending on the presence of astrocytes. The conditioned medium from the aforementioned photoinhibited 3-cell coculture system protected cells from oxygen glucose deprivation injury. CONCLUSIONS: After ischemic stroke, optogenetic inhibition of GABAergic neurons upregulated bFGF expression by endothelial cells and promoted neurobehavioral recovery, possibly orchestrated by astrocytes. Optogenetically inhibiting neuronal activity provides a novel approach to promote neurological recovery.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Corpo Estriado/metabolismo , Antagonistas GABAérgicos/uso terapêutico , Neurônios GABAérgicos/patologia , Optogenética , Animais , Isquemia Encefálica/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/biossíntese , Lasers , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Artéria Cerebral Média/patologia , Recuperação de Função Fisiológica , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa