Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biol Chem ; 300(5): 107244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556087

RESUMO

Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.


Assuntos
Fator de Transcrição GATA6 , Macrófagos Peritoneais , MicroRNAs , Transcriptoma , Animais , Camundongos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas , Transativadores/genética , Transativadores/metabolismo
2.
Plant Mol Biol ; 114(3): 43, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630371

RESUMO

The GATA transcription factors (TFs) have been extensively studied for its regulatory role in various biological processes in many plant species. The functional and molecular mechanism of GATA TFs in regulating tolerance to abiotic stress has not yet been studied in the common bean. This study analyzed the functional identity of the GATA gene family in the P. vulgaris genome under different abiotic and phytohormonal stress. The GATA gene family was systematically investigated in the P. vulgaris genome, and 31 PvGATA TFs were identified. The study found that 18 out of 31 PvGATA genes had undergone duplication events, emphasizing the role of gene duplication in GATA gene expansion. All the PvGATA genes were classified into four significant subfamilies, with 8, 3, 6, and 13 members in each subfamily (subfamilies I, II, III, and IV), respectively. All PvGATA protein sequences contained a single GATA domain, but subfamily II members had additional domains such as CCT and tify. A total of 799 promoter cis-regulatory elements (CREs) were predicted in the PvGATAs. Additionally, we used qRT-PCR to investigate the expression profiles of five PvGATA genes in the common bean roots under abiotic conditions. The results suggest that PvGATA01/10/25/28 may play crucial roles in regulating plant resistance against salt and drought stress and may be involved in phytohormone-mediated stress signaling pathways. PvGATA28 was selected for overexpression and cloned into N. benthamiana using Agrobacterium-mediated transformation. Transgenic lines were subjected to abiotic stress, and results showed a significant tolerance of transgenic lines to stress conditions compared to wild-type counterparts. The seed germination assay suggested an extended dormancy of transgenic lines compared to wild-type lines. This study provides a comprehensive analysis of the PvGATA gene family, which can serve as a foundation for future research on the function of GATA TFs in abiotic stress tolerance in common bean plants.


Assuntos
Phaseolus , Phaseolus/genética , Fatores de Transcrição GATA/genética , Agrobacterium , Sequência de Aminoácidos , Secas , Reguladores de Crescimento de Plantas
3.
Plant Mol Biol ; 114(1): 15, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329633

RESUMO

Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.


Assuntos
Arabidopsis , Alcaloides de Triptamina e Secologanina , Uncaria , Luz , Luz Vermelha , Fatores de Transcrição GATA
4.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35916164

RESUMO

The Dictyostelium atypical mitogen-activated protein kinase (MAPK) Erk2 is required for chemotactic responses to cAMP as amoeba undergo multicellular development. In this study, Erk2 was found to be essential for the cAMP-stimulated translocation of the GATA transcription factor GtaC as indicated by the distribution of a GFP-GtaC reporter. Erk2 was also found to be essential for the translocation of GtaC in response to external folate, a foraging signal that directs the chemotaxis of amoeba to bacteria. Erk1, the only other Dictyostelium MAPK, was not required for the GtaC translocation to either chemoattractant, indicating that GFP-GtaC is a kinase translocation reporter specific for atypical MAPKs. The translocation of GFP-GtaC in response to folate was absent in mutants lacking the folate receptor Far1 or the coupled G-protein subunit Gα4. Loss of GtaC function resulted in enhanced chemotactic movement to folate, suggesting that GtaC suppresses responses to folate. The alteration of four Erk2-preferred phosphorylation sites in GtaC impacted the translocation of GFP-GtaC in response to folate and the GFP-GtaC-mediated rescue of aggregation and development of gtaC- cells. The ability of different chemoattractants to stimulate Erk2-regulated GtaC translocation suggests that atypical MAPK-mediated regulation of transcription factors can contribute to different cell fates.


Assuntos
Dictyostelium , Fatores Quimiotáticos/metabolismo , Fatores Quimiotáticos/farmacologia , Dictyostelium/metabolismo , Ácido Fólico/farmacologia , Fatores de Transcrição GATA/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474170

RESUMO

Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.


Assuntos
Infecções Bacterianas , Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genética , Citrus/genética , Filogenia , Xanthomonas/fisiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia
6.
World J Microbiol Biotechnol ; 40(8): 236, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850454

RESUMO

Alternaria alternata is a prevalent postharvest pathogen that generates diverse mycotoxins, notably alternariol (AOH) and alternariol monomethyl ether (AME), which are recurrent severe contaminants. Nitrogen sources modulate fungal growth, development, and secondary metabolism, including mycotoxin production. The GATA transcription factor AreA regulates nitrogen source utilization. However, little is known about its involvement in the regulation of nitrogen utilization in A. alternata. To examine the regulatory mechanism of AaAreA on AOH and AME biosynthesis in A. alternata, we analyzed the impact of diverse nitrogen sources on the fungal growth, conidiation and mycotoxin production. The use of a secondary nitrogen source (NaNO3) enhanced mycelial elongation and sporulation more than the use of a primary source (NH4Cl). NaNO3 favored greater mycotoxin accumulation than did NH4Cl. The regulatory roles of AaAreA were further clarified through gene knockout. The absence of AaAreA led to an overall reduction in growth in minimal media containing any nitrogen source except NH4Cl. AaAreA positively regulates mycotoxin biosynthesis when both NH4Cl and NaNO3 are used as nitrogen sources. Subcellular localization analysis revealed abundant nuclear transport when NaNO3 was the sole nitrogen source. The regulatory pathway of AaAreA was systematically revealed through comprehensive transcriptomic analyses. The deletion of AaAreA significantly impedes the transcription of mycotoxin biosynthetic genes, including aohR, pksI and omtI. The interaction between AaAreA and aohR, a pathway-specific transcription factor gene, demonstrated that AaAreA binds to the aohR promoter sequence (5'-GGCTATGGAAA-3'), activating its transcription. The expressed AohR regulates the expression of downstream synthase genes in the cluster, ultimately impacting mycotoxin production. This study provides valuable information to further understand how AreA regulates AOH and AME biosynthesis in A. alternata, thereby enabling the effective design of control measures for mycotoxin contamination.


Assuntos
Alternaria , Proteínas Fúngicas , Fatores de Transcrição GATA , Regulação Fúngica da Expressão Gênica , Lactonas , Micotoxinas , Nitrogênio , Alternaria/genética , Alternaria/metabolismo , Alternaria/crescimento & desenvolvimento , Micotoxinas/metabolismo , Micotoxinas/biossíntese , Fatores de Transcrição GATA/metabolismo , Fatores de Transcrição GATA/genética , Nitrogênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lactonas/metabolismo , Esporos Fúngicos/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética
7.
J Biol Chem ; 298(7): 102072, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643321

RESUMO

Mammalian reproduction depends on the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone, which are secreted by pituitary gonadotrope cells. The zinc-finger transcription factor GATA2 was previously implicated in FSH production in male mice; however, its mechanisms of action and role in females were not determined. To directly address GATA2 function in gonadotropes, we generated and analyzed gonadotrope-specific Gata2 KO mice using the Cre-lox system. We found that while conditional KO (cKO) males exhibited ∼50% reductions in serum FSH levels and pituitary FSHß subunit (Fshb) expression relative to controls, FSH production was apparently normal in cKO females. In addition, RNA-seq analysis of purified gonadotropes from control and cKO males revealed a profound decrease in expression of gremlin (Grem1), a bone morphogenetic protein (BMP) antagonist. We show Grem1 was expressed in gonadotropes, but not other cell lineages, in the adult male mouse pituitary. Furthermore, Gata2, Grem1, and Fshb mRNA levels were significantly higher in the pituitaries of WT males relative to females but decreased in males treated with estradiol and increased following ovariectomy in control but not cKO females. Finally, we found that recombinant gremlin stimulated Fshb expression in pituitary cultures from WT mice. Collectively, the data suggest that GATA2 promotes Grem1 expression in gonadotropes and that the gremlin protein potentiates FSH production. The mechanisms of gremlin action have not yet been established but may involve attenuation of BMP binding to activin type II receptors in gonadotropes, facilitating induction of Fshb transcription by activins or related ligands.


Assuntos
Proteínas Morfogenéticas Ósseas , Hormônio Foliculoestimulante , Fator de Transcrição GATA2 , Gonadotrofos , Peptídeos e Proteínas de Sinalização Intercelular , Ativinas/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Feminino , Hormônio Foliculoestimulante/sangue , Subunidade beta do Hormônio Folículoestimulante/sangue , Fator de Transcrição GATA2/genética , Gonadotrofos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos
8.
J Integr Plant Biol ; 65(5): 1262-1276, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36534453

RESUMO

Seed dormancy is an important agronomic trait in crops, and plants with low dormancy are prone to preharvest sprouting (PHS) under high-temperature and humid conditions. In this study, we report that the GATA transcription factor TaGATA1 is a positive regulator of seed dormancy by regulating TaABI5 expression in wheat. Our results demonstrate that TaGATA1 overexpression significantly enhances seed dormancy and increases resistance to PHS in wheat. Gene expression patterns, abscisic acid (ABA) response assay, and transcriptome analysis all indicate that TaGATA1 functions through the ABA signaling pathway. The transcript abundance of TaABI5, an essential regulator in the ABA signaling pathway, is significantly elevated in plants overexpressing TaGATA1. Chromatin immunoprecipitation assay (ChIP) and transient expression analysis showed that TaGATA1 binds to the GATA motifs at the promoter of TaABI5 and induces its expression. We also demonstrate that TaGATA1 physically interacts with the putative demethylase TaELF6-A1, the wheat orthologue of Arabidopsis ELF6. ChIP-qPCR analysis showed that H3K27me3 levels significantly decline at the TaABI5 promoter in the TaGATA1-overexpression wheat line and that transient expression of TaELF6-A1 reduces methylation levels at the TaABI5 promoter, increasing TaABI5 expression. These findings reveal a new transcription module, including TaGATA1-TaELF6-A1-TaABI5, which contributes to seed dormancy through the ABA signaling pathway and epigenetic reprogramming at the target site. TaGATA1 could be a candidate gene for improving PHS resistance.


Assuntos
Fatores de Transcrição GATA , Triticum , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética
9.
BMC Genomics ; 23(1): 383, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590237

RESUMO

BACKGROUND: Cucumber is an important melon crop in the world, with different pericarp colors. However, the candidate genes and the underlying genetic mechanism for such an important trait in cucumber are unknown. In this study, a locus controlling pericarp color was found on chromosome 3 of cucumber genome. RESULTS: In this study, the light green inbred line G35 and the dark green inbred line Q51 were crossed to produce one F2 population. Consequently, we identified a major locus CsPC1 (Pericarp color 1). Next, we mapped the CsPC1 locus to a 94-kb region chromosome 3 which contains 15 genes. Among these genes, Csa3G912920, which encodes a GATA transcription factor, was expressed at a higher level in the pericarp of the NIL-1334 line (with light-green pericarp) than in that of the NIL-1325 line (with dark-green pericarp). This study provides a new allele for the improvement of cucumber pericarp color. CONCLUSION: A major QTL that controls pericarp color in cucumber, CsPC1, was identified in a 94-kb region that harbors the strong candidate gene CsGATA1.


Assuntos
Cucumis sativus , Mapeamento Cromossômico , Cucumis sativus/genética , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
J Exp Bot ; 73(18): 6133-6149, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35662326

RESUMO

Heading date, panicle architecture, and grain size are key traits that affect the yield of rice (Oryza sativa). Here, we identified a new gene, OsGATA6, whose product regulates heading date. Overexpression of OsGATA6 resulted in delayed heading, increased grain number, and decreased grain size. Knockdown lines generated by artificial microRNA (amiRNA) and CRISPR genome-edited lines of OsGATA6 both showed earlier heading, decreased grain number, and increased grain size. These results suggested that OsGATA6 negatively regulates heading date, positively regulates panicle development, and affects grain size. OsGATA6 was found to be constitutively expressed in rice, and strongly expressed in young leaves and panicles. In situ hybridization analyses showed that OsGATA6 was specifically localized in superficial cells of the panicle primordium. Overexpression lines show decreased expression of RFT1 and Hd3a, which promote heading. OsMFT1, which delays heading date and increases grain number, was down-regulated in amiRNA lines. Further analyses showed that OsGATA6 could bind to the promoter of OsMFT1 and induce its expression, thereby regulating heading date and panicle development. Overexpression of OsGATA6 in Arabidopsis resulted in repressed expression of AtFT and late flowering, suggesting that its function is similar. Taken together, we have identified a new GATA regulator that influences rice heading date and grain number, which potentially increases rice yield.


Assuntos
MicroRNAs , Oryza , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Transfus Apher Sci ; 61(6): 103481, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35690555

RESUMO

BACKGROUND: Umbilical cord blood (UCB) has improved into an attractive and alternative source of allogeneic hematopoietic stem cells (all-HSCs) in clinics and, research for three decades. Recently, it has been shown that the limited cell dose of, this valuable source can be enhanced by the ex vivo expansion of cells in many, ways. We evaluated the expression of the Gata transcription factors family and FOG-1, in expanded and differentiated cord blood-derived CD34 + hematopoietic stem cells to, megakaryocytes lineage., Methods: Separated mononuclear cells were cultured in DMEM complete medium., Harvested cells as a mesenchymal stem cell at 85 % confluency were cultured with, trypsin/EDTA and in 24-well plates. The characteristic analyses of isolated UCB- MSCs, were done by flow cytometry and adipogenic, chondrogenic, and osteogenic, differentiation assays. MACS purified UCB-CD34 + hematopoietic cells cultivated and, differentiated to megakaryocyte progenitor cells in the presence of cytokine cocktail, with UCB-MSCs. Then, the GATA1, GATA2, GATA3, and FOG-1 genes expression, after differentiation to megakaryocyte progenitor cells were performed by quantitative, real-time polymerase chain reaction (PCR)., Results: In this study, the results of real-time-PCR showed that the fold change, expression of GATA-1, FOG-1, and GATA-2 genes after co-culturing with UCB-MSCs, significantly increased to 7.3, 4.7, and 3.3-fold in comparison with control groups;respectively., Conclusion: UCB-MSCs can increase the expansion and differentiation of UCBCD34 + , to megakaryocyte progenitor cells through upregulation of GATA-1, GATA-2, and FOG-1 gene expression.


Assuntos
Sangue Fetal , Células-Tronco Mesenquimais , Humanos , Antígenos CD34/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Fatores de Transcrição GATA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regulação para Cima
12.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613470

RESUMO

GATA transcription factor genes participate in plant growth, development, morphogenesis, and stress response. In this study, we carried out a comprehensive genome-wide analysis of wheat GATA transcription factor genes to reveal their molecular evolutionary characteristics and involvement in salt and drought tolerance. In total, 79 TaGATA genes containing a conserved GATA domain were identified in the wheat genome, which were classified into four subfamilies. Collinear analysis indicated that fragment duplication plays an important role in the amplification of the wheat GATA gene family. Functional disproportionation analysis between subfamilies found that both type I and type II functional divergence simultaneously occurs in wheat GATA genes, which might result in functional differentiation of the TaGATA gene family. Transcriptional expression analysis showed that TaGATA genes generally have a high expression level in leaves and in response to drought and salt stresses. Overexpression of TaGATA62 and TaGATA73 genes significantly enhanced the drought and salt tolerance of yeast and Arabidopsis. Protein-protein docking indicated that TaGATAs can enhance drought and salt tolerance by interacting between the DNA-binding motif of GATA transcription factors and photomorphogenesis-related protein TaCOP9-5A. Our results provided a base for further understanding the molecular evolution and functional characterization of the plant GATA gene family in response to abiotic stresses.


Assuntos
Resistência à Seca , Fatores de Transcrição GATA , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Secas , Evolução Molecular , Regulação da Expressão Gênica de Plantas
13.
Am J Physiol Cell Physiol ; 320(4): C509-C519, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406026

RESUMO

Lysophosphatidic acid (LPA) is one of the lipids identified to be involved in stem cell differentiation. It exerts various functions through activation of G protein-coupled lysophosphatidic acid receptors (LPARs). In previous studies, we have demonstrated that activation of LPA receptor 3 (LPA3) promotes erythropoiesis of human hematopoietic stem cells (HSCs) and zebrafish using molecular and pharmacological approaches. Our results show that treatment with lysophosphatidic acid receptor 2 (LPA2) agonist suppressed erythropoiesis, whereas activation of LPA3 by 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted it, both in vitro and in vivo. Furthermore, we have demonstrated the inhibitory role of LPA3 during megakaryopoiesis. However, the mechanism underlying these observations remains elusive. In the present study, we suggest that the expression pattern of LPARs may be correlated with the transcriptional factors GATA-1 and GATA-2 at different stages of myeloid progenitors. We determined that manipulation of GATA factors affected the expression levels of LPA2 and LPA3 in K562 leukemia cells. Using luciferase assays, we demonstrate that the promoter regions of LPAR2 and LPAR3 genes were regulated by these GATA factors in HEK293T cells. Mutation of GATA-binding sites in these regions abrogated luciferase activity, suggesting that LPA2 and LPA3 are regulated by GATA factors. Moreover, physical interaction between GATA factors and the promoter region of LPAR genes was verified in K562 cells using chromatin immunoprecipitation (ChIP) studies. Taken together, our results suggest that balance between LPA2 and LPA3 expression, which may be determined by GATA factors, is a regulatory switch for lineage commitment in myeloid progenitors. The expression-level balance of LPA receptor subtypes represents a novel mechanism regulating erythropoiesis and megakaryopoiesis.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transcrição Gênica , Sítios de Ligação , Eritropoese , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Células HEK293 , Humanos , Células K562 , Regiões Promotoras Genéticas , Receptores de Ácidos Lisofosfatídicos/genética , Transdução de Sinais , Trombopoese
14.
J Biol Chem ; 295(39): 13617-13629, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32737196

RESUMO

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit-TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição GATA/metabolismo , Complexo Mediador/metabolismo , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica/genética
15.
Mol Microbiol ; 114(6): 1019-1037, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32808689

RESUMO

In this paper, we explored the presence of GATA in Entamoeba histolytica and their function as regulators of phagocytosis-related genes. Bioinformatics analyses evidenced a single 579 bp sequence encoding for a protein (EhGATA), smaller than GATA factors of other organisms. EhGATA appeared phylogenetically close to Dictyostelium discoideum and Schistosoma mansoni GATA proteins. Its sequence predicts the presence of a zinc-finger DNA binding domain and an AT-Hook motif; it also has two nuclear localization signals. By transmission electron and confocal microscopy, anti-EhGATA antibodies revealed the protein in the cytoplasm and nucleus, and 65% of nuclear signal was in the heterochromatin. EhGATA recombinant protein and trophozoites nuclear extracts bound to GATA-DNA consensus sequence. By in silico scrutiny, 1,610 gene promoters containing GATA-binding sequences appeared, including Ehadh and Ehvps32 promoters, whose genes participate in phagocytosis. Chromatin immunoprecipitation assays showed that EhGATA interact with Ehadh and Ehvps32 promoters. In EhGATA-overexpressing trophozoites (NeoGATA), the Ehadh and Ehvps32 mRNAs amount was modified, strongly supporting that EhGATA could regulate their transcription. NeoGATA trophozoites exhibited rounded shapes, high proliferation rates, and diminished erythrophagocytosis. Our results provide new insights into the role of EhGATA as a noncanonical transcription factor, regulating genes associated with phagocytosis.


Assuntos
Entamoeba histolytica/metabolismo , Fatores de Transcrição GATA/metabolismo , Fagocitose , Proteínas de Protozoários/metabolismo , Trofozoítos/metabolismo , Motivos de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Entamoeba histolytica/genética , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica , Filogenia , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Trofozoítos/citologia
16.
Biosci Biotechnol Biochem ; 85(3): 587-599, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624780

RESUMO

In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fatores de Transcrição GATA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Sítios de Ligação , Homeostase , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética
17.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830372

RESUMO

The GATA gene family is one of the most important transcription factors (TFs). It extensively exists in plants, contributes to diverse biological processes such as the development process, and responds to environmental stress. Although the GATA gene family has been comprehensively and systematically studied in many species, less is known about GATA genes in Chinese pears (Pyrus bretschneideri). In the current study, the GATA gene family in the four Rosaceae genomes was identified, its structural characteristics identified, and a comparative analysis of its properties was carried out. Ninety-two encoded GATA proteins were authenticated in the four Rosaceae genomes (Pyrus bretschneideri, Prunus avium, Prunus mume, and Prunus persica) and categorized into four subfamilies (Ⅰ-Ⅳ) according to phylogeny. The majority of GATA genes contained one to two introns and conserved motif composition analysis revealed their functional divergence. Whole-genome duplications (WGDs) and dispersed duplication (DSD) played a key role in the expansion of the GATA gene family. The microarray indicated that, among P. bretschneideri, P. avium, P. mume and P. persica, GATA duplicated regions were more conserved between Pyrus bretschneideri and Prunus persica with 32 orthologous genes pairs. The physicochemical parameters, duplication patterns, non-synonymous (ka), and synonymous mutation rate (ks) and GO annotation ontology were performed using different bioinformatics tools. cis-elements respond to various phytohormones, abiotic/biotic stress, and light-responsive were found in the promoter regions of GATA genes which were induced via stimuli. Furthermore, subcellular localization of the PbGATA22 gene product was investigated, showing that it was present in the nucleus of tobacco (Nicotiana tabacum) epidermal cells. Finally, in silico analysis was performed on various organs (bud, leaf, stem, ovary, petal, and sepal) and different developmental stages of fruit. Subsequently, the expression profiles of PbGATA genes were extensively expressed under exogenous hormonal treatments of SA (salicylic acid), MeJA (methyl jasmonate), and ABA (abscisic acid) indicating that play important role in hormone signaling pathways. A comprehensive analysis of GATA transcription factors was performed through systematic biological approaches and comparative genomics to establish a theoretical base for further structural and functional investigations in Rosaceae species.


Assuntos
Evolução Molecular , Fatores de Transcrição GATA/genética , Reguladores de Crescimento de Plantas/genética , Pyrus/genética , China , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica , Filogenia , Pyrus/crescimento & desenvolvimento , Rosaceae/genética , Rosaceae/crescimento & desenvolvimento , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
18.
J Biol Chem ; 294(4): 1363-1379, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30523150

RESUMO

The addition of a single ß-d-GlcNAc sugar (O-GlcNAc) by O-GlcNAc-transferase (OGT) and O-GlcNAc removal by O-GlcNAcase (OGA) maintain homeostatic O-GlcNAc levels on cellular proteins. Changes in protein O-GlcNAcylation regulate cellular differentiation and cell fate decisions, but how these changes affect erythropoiesis, an essential process in blood cell formation, remains unclear. Here, we investigated the role of O-GlcNAcylation in erythropoiesis by using G1E-ER4 cells, which carry the erythroid-specific transcription factor GATA-binding protein 1 (GATA-1) fused to the estrogen receptor (GATA-1-ER) and therefore undergo erythropoiesis after ß-estradiol (E2) addition. We observed that during G1E-ER4 differentiation, overall O-GlcNAc levels decrease, and physical interactions of GATA-1 with both OGT and OGA increase. RNA-Seq-based transcriptome analysis of G1E-ER4 cells differentiated in the presence of the OGA inhibitor Thiamet-G (TMG) revealed changes in expression of 433 GATA-1 target genes. ChIP results indicated that the TMG treatment decreases the occupancy of GATA-1, OGT, and OGA at the GATA-binding site of the lysosomal protein transmembrane 5 (Laptm5) gene promoter. TMG also reduced the expression of genes involved in differentiation of NB4 and HL60 human myeloid leukemia cells, suggesting that O-GlcNAcylation is involved in the regulation of hematopoietic differentiation. Sustained treatment of G1E-ER4 cells with TMG before differentiation reduced hemoglobin-positive cells and increased stem/progenitor cell surface markers. Our results show that alterations in O-GlcNAcylation disrupt transcriptional programs controlling erythropoietic lineage commitment, suggesting a role for O-GlcNAcylation in regulating hematopoietic cell fate.


Assuntos
Acetilglucosamina/metabolismo , Diferenciação Celular , Células Eritroides/citologia , Hematopoese , Homeostase , Células Mieloides/citologia , N-Acetilglucosaminiltransferases/metabolismo , Células Cultivadas , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Humanos , Células Mieloides/fisiologia
19.
J Biol Chem ; 294(43): 15808-15825, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31492753

RESUMO

GATA3 is a basic and essential transcription factor that regulates many pathophysiological processes and is required for the development of mammary luminal epithelial cells. Loss-of-function GATA3 alterations in breast cancer are associated with poor prognosis. Here, we sought to understand the tumor-suppressive functions GATA3 normally performs. We discovered a role for GATA3 in suppressing epithelial-to-mesenchymal transition (EMT) in breast cancer by activating miR-455-3p expression. Enforced expression of miR-455-3p alone partially prevented EMT induced by transforming growth factor ß (TGF-ß) both in cells and tumor xenografts by directly inhibiting key components of TGF-ß signaling. Pathway and biochemical analyses showed that one miRNA-455-3p target, the TGF-ß-induced protein ZEB1, recruits the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex to the promotor region of miR-455 to strictly repress the GATA3-induced transcription of this microRNA. Considering that ZEB1 enhances TGF-ß signaling, we delineated a double-feedback interaction between ZEB1 and miR-455-3p, in addition to the repressive effect of miR-455-3p on TGF-ß signaling. Our study revealed that a feedback loop between these two axes, specifically GATA3-induced miR-455-3p expression, could repress ZEB1 and its recruitment of NuRD (MTA1) to suppress miR-455, which ultimately regulates TGF-ß signaling. In conclusion, we identified that miR-455-3p plays a pivotal role in inhibiting the EMT and TGF-ß signaling pathway and maintaining cell differentiation. This forms the basis of that miR-455-3p might be a promising therapeutic intervention for breast cancer.


Assuntos
Células Epiteliais/metabolismo , Fator de Transcrição GATA3/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Sequência de Bases , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos SCID , MicroRNAs/genética , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Transcrição Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
20.
J Exp Bot ; 71(6): 1969-1984, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31872214

RESUMO

GATA transcription factors are involved in the regulation of diverse growth processes and environmental responses in Arabidopsis and rice. In this study, we conducted a comprehensive bioinformatic survey of the GATA family in the woody perennial Populus trichocarpa. Thirty-nine Populus GATA genes were classified into four subfamilies based on gene structure and phylogenetic relationships. Predicted cis-elements suggested potential roles of poplar GATA genes in light, phytohormone, development, and stress responses. A poplar GATA gene, PdGATA19/PdGNC (GATA nitrate-inducible carbon-metabolism-involved), was identified from a fast growing poplar clone. PdGNC expression was significantly up-regulated in leaves under both high (50 mM) and low (0.2 mM) nitrate concentrations. The CRISPR/Cas9-mediated mutant crispr-GNC showed severely retarded growth and enhanced secondary xylem differentiation. PdGNC-overexpressing transformants exhibited 25-30% faster growth, 20-28% higher biomass accumulation, and ~25% increase in chlorophyll content, photosynthetic rate, and plant height, compared with the wild type. Transcriptomic analysis showed that PdGNC was involved in photosynthetic electron transfer and carbon assimilation in the leaf, cell division and carbohydrate utilization in the stem, and nitrogen uptake in the root. These data indicated that PdGNC plays a crucial role in plant growth and is potentially useful in tree molecular breeding.


Assuntos
Populus , Fatores de Transcrição GATA , Regulação da Expressão Gênica de Plantas , Fotossíntese , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa