Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Peripher Nerv Syst ; 29(2): 232-242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705839

RESUMO

BACKGROUND AND AIMS: Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause axonal or demyelinating Charcot-Marie-Tooth disease (CMT) with autosomal dominant or recessive inheritance. In this study, we aim to report the genotypic and phenotypic features of GDAP1-related CMT in a Chinese cohort. METHODS: Clinical, neurophysiological, genetic data, and available muscle/brain imaging information of 28 CMT patients with GDAP1 variants were retrospectively collected. RESULTS: We identified 16 GDAP1 pathogenic variants, among which two novel variants c.980dup(p.L328FfsX25) and c.480+4T>G were first reported. Most patients (16/28) presented with AR or AD CMT2K phenotype. Clinical characteristics in our cohort demonstrated that the AR patients presented earlier onset, more severe phenotype compared with the AD patients. Considerable intra-familial phenotypic variability was observed among three AD families. Muscle atrophy and fatty infiltration in the lower extremity were detected by Muscle magnetic resonance imaging (MRI) scans in four patients. MRI showed two AR patients showed more severe muscle involvement of the posterior compartment than those of the anterolateral compartment in the calf. One patient carrying Q38*/H256R variants accompanied with mild periventricular leukoaraiosis. CONCLUSIONS: In this study, we conducted an analysis of clinical features of the GDAP1-related CMT patients, expanded the mutation spectrum in GDAP1 by reporting two novel variants, and presented the prevalent occurrence of the H256R mutation in China. The screening of GDAP1 should be particularly emphasized in Chinese patients with CMT2, given the incomplete penetrance and pathogenic inheritance patterns involving dominant and recessive modes.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas do Tecido Nervoso , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Povo Asiático/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , China , População do Leste Asiático , Mutação , Proteínas do Tecido Nervoso/genética , Linhagem , Fenótipo , Estudos Retrospectivos
2.
Neurobiol Dis ; 152: 105300, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582224

RESUMO

Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot-Marie-Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1-/-) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1-/- eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1-/- eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.


Assuntos
Cálcio/metabolismo , Doença de Charcot-Marie-Tooth , Mitocôndrias/patologia , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/deficiência , Animais , Transporte Axonal/fisiologia , Axônios/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia
3.
BMC Neurol ; 21(1): 96, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653295

RESUMO

BACKGROUND: Due to large genetic and phenotypic heterogeneity, the conventional workup for Charcot-Marie-Tooth (CMT) diagnosis is often underpowered, leading to diagnostic delay or even lack of diagnosis. In the present study, we explored how bioinformatics analysis on whole-exome sequencing (WES) data can be used to diagnose patients with CMT disease efficiently. CASE PRESENTATION: The proband is a 29-year-old female presented with a severe amyotrophy and distal skeletal deformity that plagued her family for over 20 years since she was 5-year-old. No other aberrant symptoms were detected in her speaking, hearing, vision, and intelligence. Similar symptoms manifested in her younger brother, while her parents and her older brother showed normal. To uncover the genetic causes of this disease, we performed exome sequencing for the proband and her parents. Subsequent bioinformatics analysis on the KGGSeq platform and further Sanger sequencing identified a novel homozygous GDAP1 nonsense mutation (c.218C > G, p.Ser73*) that responsible for the family. This genetic finding then led to a quick diagnosis of CMT type 4A (CMT4A), confirmed by nerve conduction velocity and electromyography examination of the patients. CONCLUSIONS: The patients with severe muscle atrophy and distal skeletal deformity were caused by a novel homozygous nonsense mutation in GDAP1 (c.218C > G, p.Ser73*), and were diagnosed as CMT4A finally. This study expanded the mutation spectrum of CMT disease and demonstrated how affordable WES could be effectively employed for the clinical diagnosis of unexplained phenotypes.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Sequenciamento do Exoma/métodos , Proteínas do Tecido Nervoso/genética , Adulto , Povo Asiático , Doença de Charcot-Marie-Tooth/genética , Pré-Escolar , China , Códon sem Sentido , Diagnóstico Tardio , Feminino , Homozigoto , Humanos , Masculino , Atrofia Muscular/genética , Linhagem , Fenótipo , Irmãos
4.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477664

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease that displays great genetic heterogeneity. The genes and mutations that underlie this heterogeneity have been extensively characterized by molecular genetics. However, the molecular pathogenesis of the vast majority of CMT subtypes remains terra incognita. Any attempts to perform experimental therapy for CMT disease are limited by a lack of understanding of the pathogenesis at a molecular level. In this study, we aim to identify the molecular pathways that are disturbed by mutations in the gene encoding GDAP1 using both yeast and human cell, based models of CMT-GDAP1 disease. We found that some mutations in GDAP1 led to a reduced expression of the GDAP1 protein and resulted in a selective disruption of the Golgi apparatus. These structural alterations are accompanied by functional disturbances within the Golgi. We screened over 1500 drugs that are available on the market using our yeast-based CMT-GDAP1 model. Drugs were identified that had both positive and negative effects on cell phenotypes. To the best of our knowledge, this study is the first report of the Golgi apparatus playing a role in the pathology of CMT disorders. The drugs we identified, using our yeast-based CMT-GDAP1 model, may be further used in translational research.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Complexo de Golgi/genética , Proteínas do Tecido Nervoso/genética , Rede trans-Golgi/genética , Doença de Charcot-Marie-Tooth/patologia , Heterogeneidade Genética , Complexo de Golgi/patologia , Células HeLa , Humanos , Modelos Genéticos , Mutação/genética , Linhagem , Relação Estrutura-Atividade , Leveduras/genética
5.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638757

RESUMO

While psoriasis is known as a T cell- and dendritic cell-driven skin inflammation disease, macrophages are also reported to play some roles in its development. However, the signaling pathway of activated macrophages contributing to psoriasis is not entirely understood. Thus, we aimed to explore the possible mechanisms of how macrophages initiate and sustain psoriasis. The differentiated THP1 cells, stimulated by imiquimod (IMQ), were utilized as the activated macrophage model. IMQ was also employed to produce psoriasis-like lesions in mice. A transcriptomic assay of macrophages revealed that the expressions of pro-inflammatory mediators and GDAP1L1 were largely increased after an IMQ intervention. The depletion of GDAP1L1 by short hairpin (sh)RNA could inhibit cytokine release by macrophages. GDAP1L1 modulated cytokine production by activating the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB pathways. Besides GDAP1L1, another mitochondrial fission factor, Drp1, translocated from the cytosol to mitochondria after IMQ stimulation, followed by the mitochondrial fragmentation according to the immunofluorescence imaging. Clodronate liposomes were injected into the mice to deplete native macrophages for examining the latter's capacity on IMQ-induced inflammation. The THP1 cells, with or without GDAP1L1 silencing, were then transplanted into the mice to monitor the deposition of macrophages. We found a significant THP1 accumulation in the skin and lymph nodes. The silencing of GDAP1L1 in IMQ-treated animals reduced the psoriasiform severity score from 8 to 2. After depleting GDAP1L1, the THP1 recruitment in the lymph nodes was decreased by 3-fold. The skin histology showed that the GDAP1L1-mediated macrophage activation induced neutrophil chemotaxis and keratinocyte hyperproliferation. Thus, mitochondrial fission can be a target for fighting against psoriatic inflammation.


Assuntos
Imiquimode/efeitos adversos , Macrófagos/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Psoríase , Animais , Feminino , Humanos , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/metabolismo , Psoríase/patologia , Células THP-1
6.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669311

RESUMO

The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.


Assuntos
Cálcio/metabolismo , Doença de Charcot-Marie-Tooth/etiologia , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Transporte Biológico , Doença de Charcot-Marie-Tooth/patologia , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Mutação , Neurônios/metabolismo , Transporte Proteico , Transdução de Sinais
7.
Neurogenetics ; 19(2): 67-76, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29396836

RESUMO

Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Códon sem Sentido/genética , Proteínas do Tecido Nervoso/genética , Adulto , Consanguinidade , Feminino , Genes Recessivos , Homozigoto , Humanos , Linhagem , Irmãos , Sequenciamento do Exoma , Adulto Jovem
8.
Am J Med Genet A ; 176(6): 1432-1437, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696773

RESUMO

Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease.


Assuntos
DNA Helicases/genética , Disceratose Congênita/etiologia , Transtornos do Humor/etiologia , Triptofano Hidroxilase/genética , Adolescente , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Disceratose Congênita/genética , Homozigoto , Humanos , Hipotireoidismo/etiologia , Hipotireoidismo/genética , Masculino , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/genética , Fenótipo , Sequenciamento Completo do Genoma , Adulto Jovem
9.
J Peripher Nerv Syst ; 23(4): 216-226, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29896895

RESUMO

Demyelinating Charcot-Marie-Tooth disease (CMT) is the most common subtype of CMT. It is caused mainly by 17p11.2 heterozygous duplication, but also by mutations in more than 20 genes which affect development and function of Schwann cells. To investigate the profile of genes mutated and clinical features in demyelinating CMT of Chinese descent, we collected a cohort of 44 demyelinating CMT patients and screened them using multiplex ligation-dependent probe amplification (MLPA) and targeted next-generation sequencing (NGS) technology. The MLPA technology revealed that 77.3% demyelinating CMT patients harbored 17p11.2 heterozygous duplication and 6.8% patients harbored heterozygous deletion of exon 6 of MPZ gene, that was further confirmed a novel c.674_675insA mutation in MPZ gene. In the patients with 17p12 heterozygous duplication, 3 sets of independent families were discordant for the CMT phenotype within the same family. The targeted NGS technology revealed that 6 candidate mutations including 1 previously reported mutation (GDAP1: c.571C>T) and 5 novel mutations (SBF2: c.415T>C, c.619G>T, c.1258A>G; GDAP1: c.589delC; PMP22: c.318delT) were found. In conclusion, combined MLPA technique with targeted NGS, the demyelinating CMT genetic diagnostic success rate was increased.


Assuntos
Povo Asiático/genética , Doença de Charcot-Marie-Tooth/genética , Adulto , Doença de Charcot-Marie-Tooth/etnologia , Criança , China/epidemiologia , Cromossomos Humanos Par 17/ultraestrutura , Análise Mutacional de DNA , Doenças Desmielinizantes/genética , Éxons/genética , Feminino , Deleção de Genes , Duplicação Gênica , Genes Dominantes , Genes Recessivos , Genótipo , Humanos , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Mutagênese Insercional , Proteína P0 da Mielina/genética , Linhagem , Fenótipo , Análise de Sequência de DNA
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 801-809, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28065847

RESUMO

Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdap1 gene. In order to get an overview about the changes that Gdap1 mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdap1 results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the ß-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Animais , Metabolismo dos Carboidratos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Humanos , Metabolismo dos Lipídeos , Metaboloma , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Regulação para Cima
11.
Clin Genet ; 92(3): 274-280, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28244113

RESUMO

BACKGROUND: Mutations in GDAP1 are responsible for heterogeneous clinical and electrophysiological phenotypes of Charcot-Marie-Tooth disease (CMT), with autosomal dominant or recessive inheritance pattern. The aim of this study is to identify the clinical and mutational spectrum of CMT patients with GDAP1 variants in Japan. MATERIALS AND METHODS: From April 2007 to October 2014, using three state-of-art technologies, we conducted gene panel sequencing in a cohort of 1,030 patients with inherited peripheral neuropathies (IPNs), and 398 mutation-negative cases were further analyzed with whole-exome sequencing. RESULTS: We identified GDAP1 variants from 10 patients clinically diagnosed with CMT. The most frequent recessive variant in our cohort (5/10), c.740C>T (p.A247V), was verified to be associated with a founder event. We also detected three novel likely pathogenic variants: c.928C>T (p.R310W) and c.546delA (p.E183Kfs*23) in Case 2 and c.376G>A (p.E126K) in Case 8. Nerve conduction study or sural nerve biopsy of all 10 patients indicated axonal type peripheral neuropathy. CONCLUSION: We identified GDAP1 variants in approximately 1% of our cohort with IPNs, and established a founder mutation in half of these patients. Our study originally described the mutational spectrum and clinical features of GDAP1-related CMT patients in Japan.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Efeito Fundador , Estudos de Associação Genética , Genótipo , Haplótipos , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Proteínas da Mielina/genética , Linhagem , Reprodutibilidade dos Testes , Sequenciamento do Exoma , Adulto Jovem
12.
J Peripher Nerv Syst ; 22(4): 464-467, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28837237

RESUMO

We report a family in which an autosomal dominantly inherited Charcot-Marie-Tooth (CMT) disease type 2 was suspected. The affected family members (proband, sister, father, and paternal aunt) showed intrafamilial clinical variability. The proband needed walking aids since adolescence because of generalized muscle weakness. The sister showed the same symptoms although to a lesser extent. The father and paternal aunt had foot deformity and atrophy of lower legs. A homozygous GDAP1 mutation was found in the proband and in the sister. Further testing showed compound heterozygous GDAP1 mutations in the father and paternal aunt. In this CMT2 family with a pseudodominant inheritance pattern DNA-diagnostics revealed the presence of both homozygous and compound heterozygous GDAP1 mutations. We recommend including multiple family members in genetic studies on CMT families.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Padrões de Herança , Proteínas do Tecido Nervoso/genética , Adulto , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Genes Dominantes , Humanos , Pessoa de Meia-Idade , Linhagem
13.
Neurobiol Dis ; 90: 3-19, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26494254

RESUMO

Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Doenças Neurodegenerativas/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo
14.
Rev Neurol (Paris) ; 170(5): 390-400, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24792485

RESUMO

Mitochondrial dysfunction has been reported in most neurodegenerative diseases. These anomalies include bioenergetic defect, respiratory chain-induced oxidative stress, defects of mitochondrial dynamics, increase sensitivity to apoptosis, and accumulation of damaged mitochondria with instable mitochondrial DNA. Significant progress has been made in our understanding of the pathophysiology of inherited mitochondrial disorders but most have no effective therapies. The development of new metabolic treatments will be useful not only for rare mitochondrial disorders but also for the wide spectrum of common age-related neurodegenerative diseases shown to be associated with mitochondrial dysfunction. A better understanding of the mitochondrial regulating pathways raised several promising perspectives of neuroprotection. This review focuses on the pharmacological approaches to modulate mitochondrial biogenesis, the removal of damaged mitochondria through mitophagy, scavenging free radicals and also dietary measures such as ketogenic diet.


Assuntos
Doenças Mitocondriais/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Animais , Citoproteção/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos
15.
Biochem Biophys Rep ; 40: 101827, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39328838

RESUMO

Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene are linked to Charcot-Marie-Tooth (CMT) disease, a hereditary neurodegenerative condition. The protein encoded by this gene is involved in mitochondrial fission and calcium homeostasis. Recently, GDAP1 has also been implicated in the survival of patients with certain cancers. Despite its significant role in specific cellular processes and associated diseases, the mechanisms regulating GDAP1 expression are largely unknown. Here, we show for the first time that methylation of the CpG island in the proximal promoter of the GDAP1 gene inhibits its activity. Treating cells with low GDAP1 expression using methyltransferase and HDAC inhibitors induced the expression of this gene and its encoded protein. This induction was associated with promoter demethylation and increased association of acetylated histones with the GDAP1 promoter. Thus, we identified a mechanism that could be used to manipulate GDAP1 expression.

16.
Biophys Chem ; 303: 107113, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778197

RESUMO

The mitochondrial outer membrane creates a diffusion barrier between the cytosol and the mitochondrial intermembrane space, allowing the exchange of metabolic products, important for efficient mitochondrial function in neurons. The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial outer membrane protein with a critical role in mitochondrial dynamics and metabolic balance in neurons. Missense mutations in the GDAP1 gene are linked to the most common human peripheral neuropathy, Charcot-Marie-Tooth disease (CMT). GDAP1 is a distant member of the glutathione-S-transferase (GST) superfamily, with unknown enzymatic properties or functions at the molecular level. The structure of the cytosol-facing GST-like domain has been described, but there is no consensus on how the protein interacts with the mitochondrial outer membrane. Here, we describe a model for GDAP1 assembly on the membrane using peptides vicinal to the GDAP1 transmembrane domain. We used oriented circular dichroism spectroscopy (OCD) with synchrotron radiation to study the secondary structure and orientation of GDAP1 segments at the outer and inner surfaces of the outer mitochondrial membrane. These experiments were complemented by small-angle X-ray scattering, providing the first experimental structural models for full-length human GDAP1. The results indicate that GDAP1 is bound into the membrane via a single transmembrane helix, flanked by two peripheral helices interacting with the outer and inner leaflets of the mitochondrial outer membrane in different orientations. Impairment of these interactions could be a mechanism for CMT in the case of missense mutations affecting these segments instead of the GST-like domain.


Assuntos
Doença de Charcot-Marie-Tooth , Membranas Mitocondriais , Humanos , Membranas Mitocondriais/metabolismo , Síncrotrons , Mitocôndrias/metabolismo , Neurônios/metabolismo , Mutação de Sentido Incorreto , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Proteínas de Membrana/metabolismo
17.
Biol Open ; 12(4)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36912213

RESUMO

GDAP1 pathogenic variants cause Charcot-Marie-Tooth (CMT) disease, the most common hereditary motor and sensory neuropathy. CMT-GDAP1 can be axonal or demyelinating, with autosomal dominant or recessive inheritance, leading to phenotypic heterogeneity. Recessive GDAP1 variants cause a severe phenotype, whereas dominant variants are associated with a milder disease course. GDAP1 is an outer mitochondrial membrane protein involved in mitochondrial membrane contact sites (MCSs) with the plasmatic membrane, the endoplasmic reticulum (ER), and lysosomes. In GDAP1-deficient models, the pathophysiology includes morphological defects in mitochondrial network and ER, impaired Ca2+ homeostasis, oxidative stress, and mitochondrial MCSs defects. Nevertheless, the underlying pathophysiology of dominant variants is less understood. Here, we study the effect upon mitochondria-lysosome MCSs of two GDAP1 clinical variants located in the α-loop interaction domain of the protein. p.Thr157Pro dominant variant causes the increase in these MCSs that correlates with a hyper-fissioned mitochondrial network. In contrast, p.Arg161His recessive variant, which is predicted to significantly change the contact surface of GDAP1, causes decreased contacts with more elongated mitochondria. Given that mitochondria-lysosome MCSs regulate Ca2+ transfer from the lysosome to mitochondria, our results support that GDAP1 clinical variants have different consequences for Ca2+ handling and that could be primary insults determining differences in severity between dominant and recessive forms of the disease.


Assuntos
Doença de Charcot-Marie-Tooth , Membranas Intracelulares , Humanos , Axônios/metabolismo , Cálcio/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
18.
J Genet Eng Biotechnol ; 21(1): 119, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966693

RESUMO

INTRODUCTION: Mutations in GDAP1 (Ganglioside-induced differentiation-associated protein 1) gene are linked to Charcot-Marie-Tooth disease (CMT), a Heterogenous group of disorders with multiple phenotypes, characterized by peripheral nerve dysfunction that can lead to vocal cord paralysis and diaphragmatic dysfunction. MAIN BODY: All three affected children of this chosen family have manifested the same clinical symptoms with progressive weakness, mild sensory impairment, and absent tendon reflexes in their early years. Electrodiagnostic analysis displayed an axonal type of neuropathy in affected patients. Sequencing of the GDAP1 gene was requested for all members of the family. Diagnostic assessments included pulmonary and vocal cord function tests, as well as phrenic and peripheral nerve conduction studies. Pathogenicity of GDAP1 variant p.Pro419Leu with axonal CMT2 and autosomal recessive inheritance was confirmed via in silico analysis. Patients with GDAP1 mutations showed dysphonia, speech difficulties, and the characteristic symptoms of CMT. The severity of symptoms correlated with the presence of a type of GDAP1 mutation. Patients with normal vocal cords and pulmonary function exhibited milder symptoms compared to those with GDAP1 mutations. Our study provides clinical insights into the phenotypic effects of GDAP1 mutations in CMT patients. The findings highlight the adverse clinical course and severe disability associated with GDAP1 mutations, including weak limb and laryngeal muscles. CONCLUSION: Patients with GDAP1 mutations and autosomal recessive neuropathy present with dysphonia and require interventions such as surgery, braces, physical therapy, and exercise. Early diagnosis and comprehensive clinical evaluations are crucial for managing CMT patients with GDAP1 mutations.

19.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513945

RESUMO

Nonsense mutations are involved in multiple peripheral neuropathies. These mutations induce the presence of a premature termination codon (PTC) at the mRNA level. As a result, a dysfunctional or truncated protein is synthesized, or even absent linked to nonsense-mediated mRNA degradation (NMD) system activation. Readthrough molecules or NMD inhibitors could be innovative therapies in these hereditary neuropathies, particularly molecules harboring the dual activity as amlexanox. Charcot-Marie-Tooth (CMT) is the most common inherited pathology of the peripheral nervous system, affecting 1 in 2500 people worldwide. Nonsense mutations in the GDAP1 gene have been associated with a severe form of CMT, prompting us to investigate the effect of readthrough and NMD inhibitor molecules. Although not clearly defined, GDAP1 could be involved in mitochondrial functions, such as mitophagy. We focused on the homozygous c.581C>G (p.Ser194*) mutation inducing CMT2H using patient human induced pluripotent stem cell (hiPSC)-derived neuronal cells. Treatment during 20 h with 100 µM of amlexanox on this cell model stabilized GDAP1 mRNAs carrying UGA-PTC and induced a restoration of the mitochondrial morphology. These results highlight the potential of readthrough molecules associated to NMD inhibitors for the treatment of genetic alterations in CMT, opening the way for future investigations and a potential therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa