Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
FASEB J ; 37(11): e23245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874260

RESUMO

Iron overload is one of the secondary osteoporosis etiologies. Cellular and molecular mechanisms involved in iron-related osteoporosis are not fully understood. AIM: The aim of the study was to investigate the respective roles of iron excess and hepcidin, the systemic iron regulator, in the development of iron-related osteoporosis. MATERIAL AND METHODS: We used mice models with genetic iron overload (GIO) related to hepcidin deficiency (Hfe-/- and Bmp6-/- ) and secondary iron overload (SIO) exhibiting a hepcidin increase secondary to iron excess. Iron concentration and transferrin saturation levels were evaluated in serum and hepatic, spleen, and bone iron concentrations were assessed by ICP-MS and Perl's staining. Gene expression was evaluated by quantitative RT-PCR. Bone micro-architecture was evaluated by micro-CT. The osteoblastic MC3T3 murine cells that are able to mineralize were exposed to iron and/or hepcidin. RESULTS: Despite an increase of bone iron concentration in all overloaded mice models, bone volume/total volume (BV/TV) and trabecular thickness (Tb.Th) only decreased significantly in GIO, at 12 months for Hfe-/- and from 6 months for Bmp6-/- . Alterations in bone microarchitecture in the Bmp6-/- model were positively correlated with hepcidin levels (BV/TV (ρ = +.481, p < .05) and Tb.Th (ρ = +.690, p < .05). Iron deposits were detected in the bone trabeculae of Hfe-/- and Bmp6-/- mice, while iron deposits were mainly visible in bone marrow macrophages in secondary iron overload. In cell cultures, ferric ammonium citrate exposure abolished the mineralization process for concentrations above 5 µM, with a parallel decrease in osteocalcin, collagen 1, and alkaline phosphatase mRNA levels. Hepcidin supplementation of cells had a rescue effect on the collagen 1 and alkaline phosphatase expression level decrease. CONCLUSION: Together, these data suggest that iron in excess alone is not sufficient to induce osteoporosis and that low hepcidin levels also contribute to the development of osteoporosis.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Osteoporose , Animais , Camundongos , Ferro/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hemocromatose/genética , Fosfatase Alcalina/metabolismo , Proteína da Hemocromatose/genética , Antígenos de Histocompatibilidade Classe I/genética , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Osteoporose/genética , Colágeno/metabolismo , Camundongos Knockout
2.
RNA Biol ; 20(1): 836-846, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953645

RESUMO

The long noncoding RNA (lncR) ANRIL in the human genome is an established genetic risk factor for atherosclerosis, periodontitis, diabetes, and cancer. However, the regulatory role of lncR-ANRIL in bone and adipose tissue metabolism remains unclear. To elucidate the function of lncRNA ANRIL in a mouse model, we investigated its ortholog, AK148321 (referred to as lncR-APDC), located on chr4 of the mouse genome, which is hypothesized to have similar biological functions to ANRIL. We initially revealed that lncR-APDC in mouse bone marrow cells (BMSCs) and lncR-ANRIL in human osteoblasts (hFOBs) are both increased during early osteogenesis. Subsequently, we examined the osteogenesis, adipogenesis, osteoclastogenesis function with lncR-APDC deletion/overexpression cell models. In vivo, we compared the phenotypic differences in bone and adipose tissue between APDC-KO and wild-type mice. Our findings demonstrated that lncR-APDC deficiency impaired osteogenesis while promoting adipogenesis and osteoclastogenesis. Conversely, the overexpression of lncR-APDC stimulated osteogenesis, but impaired adipogenesis and osteoclastogenesis. Furthermore, KDM6B was downregulated with lncR-APDC deficiency and upregulated with overexpression. Through binding-site analysis, we identified miR-99a as a potential target of lncR-APDC. The results suggest that lncR-APDC exerts its osteogenic function via miR-99a/KDM6B/Hox pathways. Additionally, osteoclasto-osteogenic imbalance was mediated by lncR-APDC through MAPK/p38 and TLR4/MyD88 activation. These findings highlight the pivotal role of lncR-APDC as a key regulator in bone and fat tissue metabolism. It shows potential therapeutic for addressing imbalances in osteogenesis, adipogenesis, and osteoclastogenesis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osso e Ossos/metabolismo , Osteogênese/genética , Tecido Adiposo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Histona Desmetilases com o Domínio Jumonji
3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835237

RESUMO

The pathophysiology of major depressive disorder (MDD) is diverse and multi-factorial, yet treatment strategies remain limited. While women are twice as likely to develop the disorder as men, many animal model studies of antidepressant response rely solely on male subjects. The endocannabinoid system has been linked to depression in clinical and pre-clinical studies. Cannabidiolic Acid-Methyl Ester (CBDA-ME, EPM-301) demonstrated anti-depressive-like effects in male rats. Here, we explored acute effects of CBDA-ME and some possible mediating mechanisms, using a depressive-like genetic animal model, the Wistar-Kyoto (WKY) rat. In Experiment 1, Female WKY rats underwent the Forced swim test (FST) following acute CBDA-ME oral ingestion (1/5/10 mg/kg). In Experiment 2, Male and female WKY rats underwent the FST after injection of CB1 (AM-251) and CB2 (AM-630) receptor antagonists 30 min before acute CBDA-ME ingestion (1 mg/kg, males; 5 mg/kg, females). Serum levels of Brain-Derived Neurotrophic Factor (BDNF), numerous endocannabinoids and hippocampal Fatty Acid Amide Hydrolase (FAAH) levels were assessed. Results indicate that females required higher doses of CBDA-ME (5 and 10 mg/kg) to induce an anti-depressive-like effect in the FST. AM-630 blocked the antidepressant-like effect in females, but not in males. The effect of CBDA-ME in females was accompanied by elevated serum BDNF and some endocannabinoids and low hippocampal expression of FAAH. This study shows a sexually diverse behavioral anti-depressive response to CBDA-ME and possible underlying mechanisms in females, supporting its potential use for treating MDD and related disorders.


Assuntos
Canabidiol , Transtorno Depressivo Maior , Receptor CB2 de Canabinoide , Animais , Feminino , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo , Canabidiol/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Endocanabinoides , Ratos Endogâmicos WKY , Receptor CB2 de Canabinoide/antagonistas & inibidores
4.
J Cell Physiol ; 236(6): 4614-4624, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33305372

RESUMO

Supraphysiological levels of the osteoblast-enriched mineralization regulator ectonucleotide pyrophosphatase or phosphodiesterase-1 (NPP1) is associated with type 2 diabetes mellitus. We determined the impact of osteoblast-specific Enpp1 ablation on skeletal structure and metabolic phenotype in mice. Female, but not male, 6-week-old mice lacking osteoblast NPP1 expression (osteoblast-specific knockout [KO]) exhibited increased femoral bone volume or total volume (17.50% vs. 11.67%; p < .01), and reduced trabecular spacing (0.187 vs. 0.157 mm; p < .01) compared with floxed (control) mice. Furthermore, an enhanced ability of isolated osteoblasts from the osteoblast-specific KO to calcify their matrix in vitro compared to fl/fl osteoblasts was observed (p < .05). Male osteoblast-specific KO and fl/fl mice showed comparable glucose and insulin tolerance despite increased levels of insulin-sensitizing under-carboxylated osteocalcin (195% increase; p < .05). However, following high-fat-diet challenge, osteoblast-specific KO mice showed impaired glucose and insulin tolerance compared with fl/fl mice. These data highlight a crucial local role for osteoblast NPP1 in skeletal development and a secondary metabolic impact that predominantly maintains insulin sensitivity.


Assuntos
Osso e Ossos/enzimologia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Osteoblastos/enzimologia , Osteogênese , Diester Fosfórico Hidrolases/deficiência , Pirofosfatases/deficiência , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Osso e Ossos/patologia , Osso Esponjoso/enzimologia , Osso Esponjoso/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fêmur/enzimologia , Fêmur/patologia , Insulina/sangue , Masculino , Camundongos Knockout , Osteoblastos/patologia , Osteocalcina/sangue , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Fatores Sexuais , Crânio/enzimologia , Crânio/patologia , Tíbia/enzimologia , Tíbia/patologia
5.
FASEB J ; 34(2): 1970-1982, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31909538

RESUMO

Osterix is a critical transcription factor of mesenchymal stem cell fate, where its loss or loss of Wnt signaling diverts differentiation to a chondrocytic lineage. Intervertebral disc (IVD) degeneration activates the differentiation of prehypertrophic chondrocyte-like cells and inactivates Wnt signaling, but its interactive role with osterix is unclear. First, compared to young-adult (5 mo), mechanical compression of old (18 mo) IVD induced greater IVD degeneration. Aging (5 vs 12 mo) and/or compression reduced the transcription of osterix and notochordal marker T by 40-75%. Compression elevated the transcription of hypertrophic chondrocyte marker MMP13 and pre-osterix transcription factor RUNX2, but less so in 12 mo IVD. Next, using an Ai9/td reporter and immunohistochemical staining, annulus fibrosus and nucleus pulposus cells of young-adult IVD expressed osterix, but aging and compression reduced its expression. Lastly, in vivo LRP5-deficiency in osterix-expressing cells inactivated Wnt signaling in the nucleus pulposus by 95%, degenerated the IVD to levels similar to aging and compression, reduced the biomechanical properties by 45-70%, and reduced the transcription of osterix, notochordal markers and chondrocytic markers by 60-80%. Overall, these data indicate that age-related inactivation of Wnt signaling in osterix-expressing cells may limit regeneration by depleting the progenitors and attenuating the expansion of chondrocyte-like cells.


Assuntos
Envelhecimento/metabolismo , Condrócitos/metabolismo , Condrogênese , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Proteínas Fetais/biossíntese , Degeneração do Disco Intervertebral/metabolismo , Fator de Transcrição Sp7/biossíntese , Proteínas com Domínio T/biossíntese , Envelhecimento/genética , Envelhecimento/patologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas Fetais/genética , Regulação da Expressão Gênica , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Camundongos , Camundongos Transgênicos , Fator de Transcrição Sp7/genética , Proteínas com Domínio T/genética
6.
Exp Cell Res ; 396(1): 112265, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898553

RESUMO

Many bone diseases result from abnormal bone resorption by osteoclasts (OCs). Studying OC related regulatory genes is necessary for the development of new therapeutic strategies. Rho GTPases have been proven to regulate OC differentiation and function and only mature OCs can carry out bone resorption. Here we demonstrate that Rac1 and Cdc42 exchange factor Triple functional domain (Trio) is critical for bone resorption caused by OCs. In this study, we created LysM-Cre;Triofl/fl conditional knockout mice in which Trio was conditionally ablated in monocytes. LysM-Cre;Triofl/fl mice showed increased bone mass due to impaired bone resorption caused by OCs. Furthermore, our in vitro analysis indicated that Trio conditional deficiency significantly suppressed OC differentiation and function. At the molecular level, Trio deficiency significantly inhibited the expression of genes critical for osteoclastogenesis and OC function. Mechanistically, our researches suggested that perturbed Rac1/Cdc42-PAK1-ERK/p38 signaling could be used to explain the lower ability of bone resorption in CKO mice. Taken together, this study indicates that Trio is a regulator of OCs. Studying the role of Trio in OCs provides a potential new insight for the treatment of OC related bone diseases.


Assuntos
Reabsorção Óssea/genética , Fêmur/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Neuropeptídeos/genética , Osteoclastos/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Fêmur/citologia , Fêmur/efeitos dos fármacos , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fator Estimulador de Colônias de Macrófagos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neuropeptídeos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fosfoproteínas/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Ligante RANK/farmacologia , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502021

RESUMO

Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost-/-) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost-/- mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost-/- chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost-/- BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost-/- mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Medula Óssea/patologia , Inflamação/etiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Anticorpos Monoclonais , Medula Óssea/fisiologia , Citocinas , Feminino , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Mielopoese
8.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830115

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/história , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Cães , Cobaias , História do Século XX , História do Século XXI , Humanos , Camundongos , Ratos
9.
Calcif Tissue Int ; 106(3): 283-293, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31745588

RESUMO

Sex hormone deprivation commonly occurs following menopause in women or after androgen-depletion during prostate cancer therapy in men, resulting in rapid bone turnover and loss of bone mass. There is a need to identify novel therapies to improve bone mass in these conditions. Previously, we identified age- and sex-dependent effects on bone mass in mice with deletion of the gene encoding the ß-galactoside binding lectin, galectin-3 (Lgals3-KO). Due to the influence of sex on the phenotype, we tested the role of sex hormones, estrogen (ß-estradiol; E2), and androgen (5α-dihydroxytestosterone; DHT) in Lgals3-KO mice. To address this, we subjected male and female wild-type and Lgals3-KO mice to gonadectomy ± E2 or DHT rescue and compared differential responses in bone mass and bone formation. Following gonadectomy, male and female Lgals3-KO mice had greater cortical bone expansion (increased total area; T.Ar) and reduced loss of bone area (B.Ar). While T.Ar and B.Ar were increased in response to DHT in wild-type mice, DHT did not alter these parameters in Lgals3-KO mice. E2 rescue more strongly increased B.Ar in Lgals3-KO compared to wild-type female mice due to a failure of E2 to repress the increase in T.Ar following gonadectomy. Lgals3-KO mice had more osteoblasts relative to bone surface when compared to wild-type animals in sham, gonadectomy, and E2 rescue groups. DHT suppressed this increase. This study revealed a mechanism for the sex-dependency of the Lgals3-KO aging bone phenotype and supports targeting galectin-3 to protect against bone loss associated with decreased sex hormone production.


Assuntos
Osso Cortical , Galectina 3/genética , Osteoporose/etiologia , Androgênios/farmacologia , Animais , Composição Corporal , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Castração , Osso Cortical/diagnóstico por imagem , Osso Cortical/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Estrogênios/farmacologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoporose/diagnóstico por imagem , Osteoporose/genética
10.
Purinergic Signal ; 13(4): 545-557, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828576

RESUMO

It is now widely recognized that purinergic signaling plays an important role in the regulation of bone remodeling. One receptor subtype, which has been suggested to be involved in this regulation, is the P2Y2 receptor (P2Y2R). In the present study, we investigated the effect of P2Y2R overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both mineral apposition rate and thickness of the endocortical osteoid layer were higher in the P2Y2R-Tg rats. µCT analysis showed reduced trabecular thickness and structural model index in P2Y2R-Tg rats. Femoral length was increased in the P2Y2R-Tg rats compared to Wt rats. In vitro, there was an increased formation of osteoclasts, but no change in total resorption in cultures from P2Y2R-Tg rats. The formation of mineralized nodules was significantly reduced in the osteoblastic cultures from P2Y2R-Tg rats. In conclusion, our study suggests that P2Y2R is involved in regulation of bone turnover, due to the effects on both osteoblasts and osteoclasts and that these effects might be relevant in the regulation of bone growth.


Assuntos
Remodelação Óssea/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Animais , Feminino , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
11.
Epilepsy Behav ; 68: 95-102, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135595

RESUMO

BACKGROUND: Anxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity. METHODS: Behavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky-Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain "4") and for a lack of AS (strain "0") from KM×Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated. RESULTS: Anxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains "4" and "0" with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS. CONCLUSIONS: Genetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity.


Assuntos
Antidepressivos/uso terapêutico , Ansiedade/genética , Depressão/genética , Epilepsia Reflexa/genética , Fluoxetina/uso terapêutico , Patrimônio Genético , Convulsões/genética , Animais , Ansiedade/complicações , Depressão/complicações , Modelos Animais de Doenças , Epilepsia Reflexa/complicações , Masculino , Ratos , Ratos Wistar , Convulsões/complicações
12.
Res Sq ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38405920

RESUMO

Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and flaring metaphyses of long bones. Many patients with CMD suffer from neurological symptoms. To date, the pathogenesis of CMD is not fully understood. Treatment is limited to decompression surgery. Here, we report a knock in (KI) mouse model for AR CMD carrying a R239Q mutation in CX43. Cx43KI/KI mice replicate many features of AR CMD in craniofacial and long bones. In contrast to Cx43+/+ littermates, Cx43KI/KI mice exhibit periosteal bone deposition and increased osteoclast (OC) numbers in the endosteum of long bones, leading to an expanded bone marrow cavity and increased cortical bone thickness. Although formation of Cx43+/+ and Cx43KI/KI resting OCs are comparable, on bone chips the actively resorbing Cx43KI/KI OCs resorb less bone. Cortical bones of Cx43KI/KI mice have an increase in degenerating osteocytes and empty lacunae. Osteocyte dendrite formation is decreased with reduced expression levels of Fgf23, Sost, Tnf-α, IL-1ß, Esr1, Esr2, and a lower Rankl/Opg ratio. Female Cx43KI/KI mice display a more severe phenotype. Sexual dimorphism in bone becomes more evident as mice age. Our data show that the CX43R239Q mutation results in mislocalization of CX43 protein and impairment of gap junction and hemichannel activity. Different from CX43 ablation mouse models, the CX43R239Q mutation leads to the AR CMD-like phenotype in Cx43KI/KI mice not only by loss-of-function but also via a not yet revealed dominant function.

13.
JBMR Plus ; 8(9): ziae103, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39165910

RESUMO

Craniometaphyseal dysplasia (CMD) is a rare genetic bone disorder, characterized by progressive thickening of craniofacial bones and flared metaphyses of long bones. Craniofacial hyperostosis leads to the obstruction of neural foramina and neurological symptoms such as facial palsy, blindness, deafness, or severe headache. Mutations in ANKH (mouse ortholog ANK), a transporter of small molecules such as citrate and ATP, are responsible for autosomal dominant CMD. Knock-in (KI) mice carrying an ANKF377del mutation (AnkKI/KI ) replicate many features of human CMD. Pyrophosphate (PPi) levels in plasma are significantly reduced in AnkKI/KI mice. PPi is a potent inhibitor of mineralization. To examine the extent to which restoration of circulating PPi levels may prevent the development of a CMD-like phenotype, we treated AnkKI/KI mice with the recombinant human ENPP1-Fc protein IMA2a. ENPP1 hydrolyzes ATP into AMP and PPi. Male and female Ank+/+ and AnkKI/KI mice (n ≥ 6/group) were subcutaneously injected with IMA2a or vehicle weekly for 12 wk, starting at the age of 1 wk. Plasma ENPP1 activity significantly increased in AnkKI/KI mice injected with IMA2a (Vehicle/IMA2a: 28.15 ± 1.65/482.7 ± 331.2 mOD/min; p <.01), which resulted in the successful restoration of plasma PPi levels (Ank+/+ /AnkKI/KI vehicle treatment/AnkKI/KI IMA2a: 0.94 ± 0.5/0.43 ± 0.2/1.29 ± 0.8 µM; p <.01). We examined the skeletal phenotype by X-Ray imaging and µCT. IMA2a treatment of AnkKI/KI mice did not significantly correct CMD features such as the abnormal shape of femurs, increased bone mass of mandibles, hyperostotic craniofacial bones, or the narrowed foramen magnum. However, µCT imaging showed ectopic calcification near basioccipital bones at the level of the foramen magnum and on joints of AnkKI/KI mice. Interestingly, IMA2a treatment significantly reduced the volume of calcified nodules at both sites. Our data demonstrate that IMA2a is sufficient to restore plasma PPi levels and reduce ectopic calcification but fails to rescue skeletal abnormalities in AnkKI/KI mice under our treatment conditions.

14.
JBMR Plus ; 8(10): ziae108, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39228688

RESUMO

Osteoporosis and other metabolic bone diseases are prevalent in the aging population. While bone has the capacity to regenerate throughout life, bone formation rates decline with age and contribute to reduced bone density and strength. Identifying mechanisms and pathways that increase bone accrual in adults could prevent fractures and accelerate healing. G protein-gated inwardly rectifying K+ (GIRK) channels are key effectors of G protein-coupled receptor signaling. Girk3 was recently shown to regulate endochondral ossification. Here, we demonstrate that deletion of Girk3 increases bone mass after 18 weeks of age. Male 24-week-old Girk3 -/- mice have greater trabecular bone mineral density and bone volume fraction than wildtype (WT) mice. Osteoblast activity is moderately increased in 24-week-old Girk3 -/- mice compared to WT mice. In vitro, Girk3-/- bone marrow stromal cells (BMSCs) are more proliferative than WT BMSCs. Calvarial osteoblasts and BMSCs from Girk3 -/- mice are also more osteogenic than WT cells, with altered expression of genes that regulate the wingless-related integration site (Wnt) family. Wnt inhibition via Dickkopf-1 (Dkk1) or ß-catenin inhibition via XAV939 prevents enhanced mineralization, but not proliferation, in Girk3 -/- BMSCs and slows these processes in WT cells. Finally, selective ablation of Girk3 from cells expressing Cre recombinase from the 2.3 kb-Col1a1 promoter, including osteoblasts and osteocytes, is sufficient to increase bone mass and bone strength in male mice at 24 weeks of age. Taken together, these data demonstrate that Girk3 regulates progenitor cell proliferation, osteoblast differentiation, and bone mass accrual in adult male mice.

15.
Bone ; 190: 117282, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39401533

RESUMO

Iroquois homeobox gene 3 (Irx3) and Irx5 encode transcription factors that play crucial roles in limb development and bone formation. Previous studies using knockout mice have revealed a role of Irx3 and Irx5 in osteogenesis in young adult mice. However, whether these genes are also essential for bone homeostasis in adulthood and contribute to bone diseases remain poorly understood. Osteoporosis is a disease characterized by lower bone mineral density and disrupted bone microarchitecture, typically occurs in postmenopausal women. Here, we demonstrate that Irx3/5dHet mice with a half-reduction of Irx3 and Irx5 dosage serve as a novel model of osteoporosis. By micro-computed tomography, we found that Irx3/5dHet mice exhibited sex-dependent bone loss patterns. While male Irx3/5dHet mice progressively lost trabecular microstructures with aging, female mutants exhibited lower bone mineral density (BMD) and bone volume fraction (BV/TV) at early adulthood (9-15 weeks old) but without further loss later at 1 year of age. Bone marrow adipocytes are known to be elevated at the expenses of lower osteogenesis in osteoporotic bone marrow. Surprisingly, we found sex-dependent changes in adipogenesis at the age of skeletal maturity that bone marrow adipocytes were reduced in female Irx3/5dHet mice along with deteriorated osteogenesis, while male mice exhibited elevated adipogenesis. In summary, we reported a novel genetic model for osteoporosis-like phenotypes, highlighting sex-dependent bone mineral density and bone marrow adipocyte characteristics.

16.
J Bone Miner Res ; 39(3): 315-325, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477773

RESUMO

Environmental factors and genetic variation individually impact bone. However, it is not clear how these factors interact to influence peak bone mass accrual. Here we tested whether genetically programmed high bone formation driven by missense mutations in the Lrp5 gene (Lrp5A214V) altered the sensitivity of mice to an environment of inadequate dietary calcium (Ca) intake. Weanling male Lrp5A214V mice and wildtype littermates (control) were fed AIN-93G diets with 0.125%, 0.25%, 0.5% (reference, basal), or 1% Ca from weaning until 12 weeks of age (ie, during bone growth). Urinary Ca, serum Ca, Ca regulatory hormones (PTH, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3)), bone parameters (µCT, ash), and renal/intestinal gene expression were analyzed. As expected, low dietary Ca intake negatively impacted bones and Lrp5A214V mice had higher bone mass and ash content. Although bones of Lrp5A214V mice have more matrix to mineralize, their bones were not more susceptible to low dietary Ca intake. In control mice, low dietary Ca intake exerted expected effects on serum Ca (decreased), PTH (increased), and 1,25(OH)2D3 (increased) as well as their downstream actions (ie, reducing urinary Ca, increasing markers of intestinal Ca absorption). In contrast, Lrp5A214V mice had elevated serum Ca with a normal PTH response but a blunted 1,25(OH)2D3 response to low dietary Ca that was reflected in the renal 1,25(OH)2D3 producing/degrading enzymes, Cyp27b1 and Cyp24a1. Despite elevated serum Ca in Lrp5A214V mice, urinary Ca was not elevated. Despite an abnormal serum 1,25(OH)2D3 response to low dietary Ca, intestinal markers of Ca absorption (Trpv6, S100g mRNA) were elevated in Lrp5A214V mice and responded to low Ca intake. Collectively, our data indicate that the Lrp5A214V mutation induces changes in Ca homeostasis that permit mice to retain more Ca and support their high bone mass phenotype.


Optimizing peak bone mass (PBM) is critical for strong bones and osteoporosis prevention. Both genetics and dietary factors like calcium (Ca) contribute to PBM. The goal of this research study was to determine how dietary Ca intake and genetics interact with each other to impact bone mass. Lowering dietary Ca in control mice causes hormonal changes that increase intestinal Ca absorption and reduce urinary Ca loss to protect bone; but this process fails when dietary Ca becomes too low. However, mice with genetically programmed high bone mass could maintain high bone mass even when challenged with Ca deficient diets. This protection is because the high bone mass mice maintain higher serum Ca, have altered production and utilization of Ca-regulating hormones, and have increased molecular indicators of intestinal Ca absorption and kidney Ca retention. Our findings are important because they demonstrate how a genetic program that increases bone formation can drive improved efficiency of Ca utilization to accommodate the increased need for Ca deposition into bone. We believe that our preclinical study provides important proof-of-principle support for the concept of personalized recommendations for bone health management.


Assuntos
Cálcio da Dieta , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Masculino , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Cálcio da Dieta/farmacologia , Cálcio da Dieta/metabolismo , Camundongos , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D/administração & dosagem , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/urina , Calcitriol/sangue , Calcitriol/farmacologia , Calcitriol/metabolismo , Tamanho do Órgão/efeitos dos fármacos
17.
J Dent Res ; 103(3): 318-328, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38343385

RESUMO

Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.


Assuntos
Reabsorção Óssea , Fatores Reguladores de Interferon , Reabsorção da Raiz , Animais , Humanos , Camundongos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Mutação , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Reabsorção da Raiz/genética , Reabsorção da Raiz/metabolismo
18.
Biomedicines ; 12(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255227

RESUMO

Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.

19.
J Bone Miner Res ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385466

RESUMO

Inactivation of 24-hydroxylase (CYP24A1) causes mild hypercalcemia in humans that becomes severe and life-threatening during pregnancy through unclear mechanisms. We studied Cyp24a1 null mice during pregnancy, lactation, and post-weaning. We hypothesized that Cyp24a1 nulls have a much greater increase in calcitriol during pregnancy and lactation, leading to markedly increased intestinal calcium absorption and reduced lactational bone loss. WT and Cyp24a1 null sisters were mated to Cyp24a1+/- males. Timepoints included baseline (BL), late pregnancy (LP), mid-lactation (ML), late lactation (LL), and weekly x4 weeks of post-weaning recovery (R1-4). Assessments included intestinal calcium absorption (IntCaAbs) by gavage of 45Ca, bone mineral content (BMC) by DXA, microCT of femurs, 3-point bending tests of tibias, serum hormones, serum and urine minerals, milk analysis, and intestinal gene expression. At LP, whole body BMC increased equally by ~12% in null and WT. Calcitriol was 2.5-fold higher in nulls vs WT, accompanied by 3-fold increased IntCaAbs, hypercalcemia, hypercalciuria, and 6.5-fold higher FGF23. PTH was suppressed in both. Twenty percent of null dams died during delivery but their serum calcium at LP did not differ from Cyp24a1 nulls that survived. At ML, calcitriol, IntCaAbs, and FGF23 declined in both genotypes but remained higher than BL values in Cyp24a1 nulls. By LL, nulls were still hypercalcemic vs WT, and had lost less mean whole body BMC (11% vs. 21%, P<.02), but by micro-CT there were no differences from WT in cortical or trabecular bone mass. Lactational losses in BMC, cortical thickness, and trabecular number were restored by R4 in both genotypes. In summary, ablation of Cyp24a1 increased IntCaAbs and caused hypercalcemia during pregnancy and lactation, late gestational mortality in some nulls, and reduced lactational BMC loss. Treating women with gestational hypercalcemia from CYP24A1 mutations should focus on reducing calcitriol or IntCaAbs, since increased bone resorption is not the cause.


24-hydroxylase breaks down calcitriol, the hormonal form of vitamin D. Genetic deficiency of 24-hydroxylase causes mildly increased blood calcium (hypercalcemia) in adult humans, which can become life-threateningly high during pregnancy. We used a genetically engineered mouse model to determine the cause of this severe hypercalcemia. Calcitriol increased 10-fold during pregnancy in 24-hydroxylase deficient mice versus 4-fold in normal pregnant mice. High calcitriol in turn caused a marked increase in intestinal calcium absorption, which explained the hypercalcemia. Some 24-hydroxylase deficient mice died in late pregnancy. Our findings indicate that affected pregnant women need treatments that specifically reduce intestinal calcium absorption.

20.
J Psychiatr Res ; 175: 50-59, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704981

RESUMO

Major depressive disorder (MDD) stands as a significant cause of disability globally. Cannabidiolic Acid-Methyl Ester (CBDA-ME) (EPM-301, HU-580), a derivative of Cannabidiol, demonstrates immediate antidepressant-like effects, yet it has undergone only minimal evaluation in psychopharmacology. Our goal was to investigate the behavioral and potential molecular mechanisms associated with the chronic oral administration of this compound in the Wistar Kyoto (WKY) genetic model of treatment-resistant depression. Male WKY rats were subjected to behavioral assessments before and after receiving chronic (14-day) oral doses of CBDA-ME (0.5 mg/kg), 15 mg/kg of imipramine or vehicle. At the end of the study, plasma corticosterone levels and mRNA expression of various genes in the medial Prefrontal Cortex and Hippocampus were measured. Behavioral outcomes from CBDA-ME treatment indicated an antidepressant-like effect similar to imipramine, as oral ingestion reduced immobility and increased swimming duration in the Forced Swim Test. Neither treatment influenced locomotion in the Open Field Test nor preference in the Saccharin Preference Test. The behavioral impact in WKY rats coincided with reduced corticosterone serum levels, upregulated mRNA expression of Cannabinoid receptor 1, Fatty Acid Amide Hydrolase, and Corticotropin-Releasing Hormone Receptor 1, alongside downregulation of the Serotonin Transporter in the hippocampus. Additionally, there was an upregulation of CB1 mRNA expression and downregulation of Brain-Derived Neurotrophic Factor in the mPFC. These findings contribute to our limited understanding of the antidepressant effects of CBDA-ME and shed light on its potential psychopharmacological mechanisms. This discovery opens up possibilities for utilizing cannabinoids in the treatment of major depressive disorder and related conditions.


Assuntos
Antidepressivos , Transtorno Depressivo Resistente a Tratamento , Modelos Animais de Doenças , Imipramina , Córtex Pré-Frontal , Ratos Endogâmicos WKY , Animais , Masculino , Ratos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Imipramina/farmacologia , Imipramina/administração & dosagem , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Canabinoides/farmacologia , Canabinoides/administração & dosagem , Corticosterona/sangue , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/efeitos dos fármacos , Amidoidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa