Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2116506119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35333651

RESUMO

SignificanceTirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores dos Hormônios Gastrointestinais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Incretinas/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/uso terapêutico
2.
Cardiovasc Diabetol ; 23(1): 242, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987789

RESUMO

Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Incretinas , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Animais , Resultado do Tratamento , Incretinas/uso terapêutico , Incretinas/efeitos adversos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Biomarcadores/sangue , Medição de Risco , Receptor do Peptídeo Semelhante ao Glucagon 2 , Polipeptídeo Inibidor Gástrico
3.
Cardiovasc Diabetol ; 23(1): 112, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555463

RESUMO

BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective antidiabetic drugs with potential cardiovascular benefits. Despite their well-established role in reducing the risk of major adverse cardiovascular events (MACE), their impact on heart failure (HF) remains unclear. Therefore, our study examined the cardioprotective effects of tirzepatide (TZT), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonist. METHODS: A three-steps approach was designed: (i) Meta-analysis investigation with the primary objective of assessing major adverse cardiovascular events (MACE) occurrence from major randomized clinical trials.; (ii) TZT effects on a human cardiac AC16 cell line exposed to normal (5 mM) and high (33 mM) glucose concentrations for 7 days. The gene expression and protein levels of primary markers related to cardiac fibrosis, hypertrophy, and calcium modulation were evaluated. (iii) In silico data from bioinformatic analyses for generating an interaction map that delineates the potential mechanism of action of TZT. RESULTS: Meta-analysis showed a reduced risk for MACE events by TZT therapy (HR was 0.59 (95% CI 0.40-0.79, Heterogeneity: r2 = 0.01, I2 = 23.45%, H2 = 1.31). In the human AC16 cardiac cell line treatment with 100 nM TZT contrasted high glucose (HG) levels increase in the expression of markers associated with fibrosis, hypertrophy, and cell death (p < 0.05 for all investigated markers). Bioinformatics analysis confirmed the interaction between the analyzed markers and the associated pathways found in AC16 cells by which TZT affects apoptosis, fibrosis, and contractility, thus reducing the risk of heart failure. CONCLUSION: Our findings indicate that TZT has beneficial effects on cardiac cells by positively modulating cardiomyocyte death, fibrosis, and hypertrophy in the presence of high glucose concentrations. This suggests that TZT may reduce the risk of diabetes-related cardiac damage, highlighting its potential as a therapeutic option for heart failure management clinical trials. Our study strongly supports the rationale behind the clinical trials currently underway, the results of which will be further investigated to gain insights into the cardiovascular safety and efficacy of TZT.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 2 , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/prevenção & controle , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Hipertrofia , Hipoglicemiantes/farmacologia , Miócitos Cardíacos , Fibrose , Glucose , Receptor do Peptídeo Semelhante ao Glucagon 1
4.
Rev Endocr Metab Disord ; 24(6): 1089-1101, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37526853

RESUMO

Glucagon-like peptide-1 receptor analogs (GLP-1 RAs) have been an innovative and instrumental drug class in the management of both type 2 diabetes and obesity. Tirzepatide is a novel agent that acts as an agonist for both GLP-1 receptors and gastric inhibitory polypeptide (GIP) receptors, another incretin that lowers glucose and appetite. Although previous studies showed a lack of therapeutic benefit for GIP agonists, current studies show that the glucose lowering and weight loss effects of tirzepatide are at least as effective as GLP-1 RAs with a similar adverse effect profile. Some studies, though not conclusive, predict that tirzepatide may in fact be more potent than GLP-1 RAs at reducing weight. A thorough review of the studies that led to tirzepatide's approval allows for comparisons between tirzepatide and GLP-1 RAs; it also allows for predictions of tirzepatide's eventual place in therapy - an agent used preferentially over GLP-1 RAs in patients with or without diabetes desiring to lose weight.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Inibidor Gástrico , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
5.
Diabetes Obes Metab ; 25(6): 1534-1546, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36852745

RESUMO

AIM: To clarify the effects of glucose-dependent insulinotropic polypeptide (GIP) receptor agonists (GIPRAs) on feeding and body weight. MATERIALS AND METHODS: Acute and subchronic effects of subcutaneous GIPFA-085, a long-acting GIPRA, on blood glucose, food intake, body weight, respiratory exchange ratio and plasma leptin levels were measured in diet-induced obese (DIO) mice and/or functional leptin-deficient ob/ob mice. The effects of GIPFA-085 on the hypothalamic arcuate nucleus (ARC) neurons from lean and DIO mice were studied by measuring cytosolic Ca2+ concentration ([Ca2+ ]i ). RESULTS: Single bolus GIPFA-085 (30, 300 nmol/kg) dose-dependently reduced blood glucose in glucose tolerance tests, elevated plasma leptin levels at 0.5-6 hours and inhibited food intake at 2-24 hours after injection in DIO mice. Daily GIPFA-085 (300 nmol/kg) inhibited food intake and increased fat utilization on day 1, and reduced body weight gain on days 3-12 of treatment in DIO, but not ob/ob, mice. GIPFA-085 increased [Ca2+ ]i in the ARC leptin-responsive and proopiomelanocortin (POMC) neurons. GIPFA-085 and leptin cooperated to increase [Ca2+ ]i in ARC neurons and inhibit food intake. CONCLUSIONS: GIPFA-085 acutely inhibits feeding and increases lipid utilization, and sustainedly lowers body weight in DIO mice via mechanisms involving rises in leptin and activation of ARC leptin-responsive and POMC neurons. This study highlights the therapeutic potential of GIPRAs for treating obesity and diabetes.


Assuntos
Núcleo Arqueado do Hipotálamo , Leptina , Camundongos , Animais , Leptina/metabolismo , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Pró-Opiomelanocortina/uso terapêutico , Glicemia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Dieta , Peso Corporal , Receptores Acoplados a Proteínas G , Neurônios/metabolismo , Camundongos Endogâmicos C57BL
6.
Nutr Metab Cardiovasc Dis ; 33(3): 494-499, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710118

RESUMO

AIMS: Some studies have shown that in type 2 diabetic patients the potentiation of insulin secretion by glucose-dependent insulinotropic polypeptide (GIP) is compromised but can be partially restored if glucose is lowered. Renewed interest for this phenomenon has been expressed in the context of the new dual GIP-GLP-1 (glucagon-like peptide-1) receptor agonists, which have shown greater efficacy of this drug class compared with single GLP-1 receptor agonists, including on insulin secretion. However, contrasting evidence has been reported on the recovery of GIP action with glucose lowering. In our study, we reconsider all publications relevant for the problem and analyze the results using a uniform methodology. DATA SYNTHESIS: We show that, while some contradictions might be explained by heterogeneous analysis methods, it is possible to interpret all the available data coherently and conclude that the effect of glucose lowering is relevant only when glucose concentration is virtually normalized. CONCLUSIONS: While a significant restoration of GIP action may not occur with some traditional diabetes treatments, GIP action improvement might become relevant when glucose is virtually normalized and could explain part of the success of the double GIP-GLP-1 receptor agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Secreção de Insulina , Insulina/metabolismo , Glicemia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico
7.
J Endocrinol Invest ; 46(11): 2213-2236, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37378828

RESUMO

BACKGROUND: Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE: This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. ß3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.

8.
Phytother Res ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943416

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone secreted by K cells in the small intestine and is considered an obesity-promoting factor. In this study, we systematically investigated the anti-obesity effects of intragastric safflower yellow (SY)/hydroxysafflor yellow A (HSYA) and the underlying mechanism for the first time. Our results showed that intragastric SY/HSYA, rather than an intraperitoneal injection, notably decreased serum GIP levels and GIP staining in the small intestine in diet-induced obese (DIO) mice. Moreover, intragastric SY/HSYA was also first found to significantly suppress GIP receptor (GIPR) signaling in both the hypothalamus and subcutaneous White adipose tissue. Our study is the first to show that intragastric SY/HSYA obviously reduced food intake and body weight gain in leptin sensitivity experiments and decreased serum leptin levels in DIO mice. Further experiments demonstrated that SY treatment also significantly reduced leptin levels, whereas the inhibitory effect of SY on leptin levels was reversed by activating GIPR in 3 T3-L1 adipocytes. In addition, intragastric SY/HSYA had already significantly reduced serum GIP levels and GIPR expression before the serum leptin levels were notably changed in high-fat-diet-fed mice. These findings suggested that intragastric SY/HSYA may alleviate diet-induced obesity in mice by ameliorating hyperleptinemia via dual inhibition of the GIP-GIPR axis.

9.
Diabetes Obes Metab ; 24(5): 788-805, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34984793

RESUMO

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have become agents of choice for people with type 2 diabetes (T2D) with established cardiovascular disease or in high-risk individuals. With currently available GLP-1 RAs, 51%-79% of subjects achieve an HbA1c target of less than 7.0% and 4%-27% lose 10% of body weight, illustrating the need for more potent agents. Three databases (PubMed, Cochrane, Web of Science) were searched using the MESH terms 'glucagon-like peptide-1 receptor agonist', 'glucagon receptor agonist', 'glucose-dependent insulinotropic peptide', 'dual or co-agonist', and 'tirzepatide'. Quality of papers was scored using PRISMA guidelines. Risk of bias was evaluated using the Cochrane assessment tool. An HbA1c target of less than 7.0% was attained by up to 80% with high-dose GLP-1 RAs and up to 97% with tirzepatide, with even up to 62% of people with T2D reaching an HbA1c of less than 5.7%. A body weight loss of 10% or greater was obtained by up to 50% and up to 69% with high-dose GLP-1 RAs or tirzepatide, respectively. The glucose- and weight-lowering effects of the GLP-1/glucagon RA cotadutide equal those of liraglutide 1.8 mg. Gastrointestinal side effects of high-dose GLP-1 RAs and co-agonists occurred in 30%-70% of patients, mostly arising within the first 2 weeks of the first dose, being mild or moderate in severity, and transient. The development of high-dose GLP-1 RAs and the dual GLP-1/glucose-dependent insulinotropic peptide RA tirzepatide resulted in increasing numbers of people reaching HbA1c and body weight targets, with up to 62% attaining normoglycaemia with 15-mg tirzepatide. Whether this will also translate to better cardiovascular outcomes and affect treatment guidelines remains to be studied.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Glucagon , Glicemia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Hipoglicemiantes/efeitos adversos
10.
Cardiovasc Diabetol ; 20(1): 225, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819089

RESUMO

Incretin hormones are peptides released in the intestine in response to the presence of nutrients in its lumen. The main incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). GLP-1 stimulates insulin secretion, inhibits glucagon secretion at pancreatic α cells and has also extrapancreatic influences as slowing of gastric emptying which increases the feeling of satiety. GIP is the main incretin hormone in healthy people, causative of most the incretin effects, but the insulin response after GIP secretion in type 2 diabetes mellitus (T2DM) is strongly reduced. Therefore, in the past GIP has been considered an unappealing therapeutic target for T2DM. This conception has been changing during recent years, since it has been reported that resistance to GIP can be reversed and its effectiveness restored by improving glycemic control. This fact paved the way for the development of a GIP receptor agonist-based therapy for T2DM, looking also for the possibility of finding a combined GLP-1/GIP receptor agonist. In this framework, the novel dual GIP and GLP-1 receptor agonist tirzepatide seems to be not just a new antidiabetic medication. Administered as a subcutaneous weekly injection, it is a manifold single pharmacological agent that has the ability to significantly lower glucose levels, as well as improve insulin sensitivity, reduce weight and amend dyslipidemia favorably modifying the lipid profile. Tirzepatide and additional dual GLP-1/GIP receptor agonists that could eventually be developed in the future seem to be a promising furthest advance for the management of several cardiometabolic settings. Obviously, it is too early to be overly hopeful since it is still necessary to determine the long-term effects of these compounds and properly verify the potential cardiovascular benefits. Anyway, we are currently facing a novel and very appealing therapeutic option.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/agonistas , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Polipeptídeo Inibidor Gástrico/efeitos adversos , Humanos , Hipoglicemiantes/efeitos adversos , Incretinas/efeitos adversos , Insulina/sangue , Secreção de Insulina/efeitos dos fármacos , Lipídeos/sangue , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Resultado do Tratamento
11.
Diabetes Obes Metab ; 23(1): 68-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886401

RESUMO

The glucose-dependent insulinotropic polypeptide (GIP) fragment GIP(3-30)NH2 is a selective, competitive GIP receptor antagonist, and doses of 800 to 1200 pmol/kg/min inhibit GIP-induced potentiation of glucose-stimulated insulin secretion by >80% in humans. We evaluated the effects of GIP(3-30)NH2 across a wider dose range in eight healthy men undergoing six separate and randomized 10-mmol/L hyperglycaemic clamps (A-F) with concomitant intravenous infusion of GIP (1.5 pmol/kg/min; A-E) or saline (F). Clamps A to E involved double-blinded, infusions of saline (A) and GIP(3-30)NH2 at four rates: 2 (B), 20 (C), 200 (D) and 2000 pmol/kg/min (E), respectively. Mean plasma concentrations of glucose (A-F) and GIP (A-E) were similar. GIP-induced potentiation of glucose-stimulated insulin secretion was reduced by 44 ± 10% and 84 ± 10% during clamps D and E, respectively. Correspondingly, the amounts of glucose required to maintain the clamp during D and E were not different from F. GIP-induced suppression of bone resorption and increase in heart rate were lowered by clamps D and E. In conclusion, GIP(3-30)NH2 provides extensive, dose-dependent inhibition of the GIP receptor in humans, with most pronounced effects of the doses 200 to 2000 pmol/kg/min within the tested range.


Assuntos
Glicemia , Receptores dos Hormônios Gastrointestinais , Polipeptídeo Inibidor Gástrico , Glucose , Humanos , Insulina , Masculino , Fragmentos de Peptídeos
14.
J Pathol ; 238(2): 345-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26455904

RESUMO

The two incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP1), were discovered 45 and 30 years ago. Initially, only their insulinotropic effect on pancreatic ß cells was known. Over the years, physiological and pharmacological effects of GIP and GLP1 in numerous extrapancreatic tissues were discovered which partially overlap, but may also be specific for GIP or GLP1 in certain target tissues. While the insulinotropic effect of GIP was found to be blunted in patients with type 2 diabetes, the function of GLP1 is preserved and GLP1 receptor agonists and dipeptidyl-peptidase 4 (DPP4) inhibitors, which prolong the half-life of incretins, are widely used in diabetes therapy. Wild-type and genetically modified rodent models have provided important mechanistic insights into the incretin system, but may have limitations in predicting the clinical efficacy and safety of incretin-based therapies. This review summarizes insights from rodent and non-rodent models (pig, non-human primate) into physiological and pharmacological incretin effects, with a focus on the pancreas. Similarities and differences between species are discussed and the increasing potential of genetically engineered pig models for translational incretin research is highlighted.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Hipoglicemiantes/farmacologia , Incretinas/fisiologia , Animais , Animais Geneticamente Modificados , Polipeptídeo Inibidor Gástrico/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Incretinas/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Liraglutida/farmacologia , Camundongos , Camundongos Knockout , Primatas , Receptores dos Hormônios Gastrointestinais/fisiologia , Roedores , Suínos
15.
J Biol Chem ; 288(27): 19760-72, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23689510

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is an endogenous hormonal factor (incretin) that, upon binding to its receptor (GIPr; a class B G-protein-coupled receptor), stimulates insulin secretion by beta cells in the pancreas. There has been a lack of potent inhibitors of the GIPr with prolonged in vivo exposure to support studies on GIP biology. Here we describe the generation of an antagonizing antibody to the GIPr, using phage and ribosome display libraries. Gipg013 is a specific competitive antagonist with equally high potencies to mouse, rat, dog, and human GIP receptors with a Ki of 7 nm for the human GIPr. Gipg013 antagonizes the GIP receptor and inhibits GIP-induced insulin secretion in vitro and in vivo. A crystal structure of Gipg013 Fab in complex with the human GIPr extracellular domain (ECD) shows that the antibody binds through a series of hydrogen bonds from the complementarity-determining regions of Gipg013 Fab to the N-terminal α-helix of GIPr ECD as well as to residues around its highly conserved glucagon receptor subfamily recognition fold. The antibody epitope overlaps with the GIP binding site on the GIPr ECD, ensuring competitive antagonism of the receptor. This well characterized antagonizing antibody to the GIPr will be useful as a tool to further understand the biological roles of GIP.


Assuntos
Anticorpos Monoclonais Murinos , Epitopos , Fragmentos Fab das Imunoglobulinas , Receptores dos Hormônios Gastrointestinais , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Cristalografia por Raios X , Cães , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Polipeptídeo Inibidor Gástrico , Células HEK293 , Humanos , Ligação de Hidrogênio , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Relação Estrutura-Atividade
16.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614123

RESUMO

The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid-receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid-receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.


Assuntos
Colesterol , Receptores de Glucagon , Transdução de Sinais , Humanos , Receptores de Glucagon/metabolismo , Animais , Colesterol/metabolismo , Transdução de Sinais/fisiologia , Metabolismo dos Lipídeos/fisiologia
17.
Br J Pharmacol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952084

RESUMO

BACKGROUND AND PURPOSE: The gut hormone glucose-dependent insulinotropic polypeptide (GIP) signals via the GIP receptor (GIPR), resulting in postprandial potentiation of glucose-stimulated insulin secretion. The translation of results from rodent studies to human studies has been challenged by the unexpected effects of GIPR-targeting compounds. We, therefore, investigated the variation between species, focusing on GIPR desensitization and the role of the receptor C-terminus. EXPERIMENTAL APPROACH: The GIPR from humans, mice, rats, pigs, dogs and cats was studied in vitro for cognate ligand affinity, G protein activation (cAMP accumulation), recruitment of beta-arrestin and internalization. Variants of the mouse, rat and human GIPRs with swapped C-terminal tails were studied in parallel. KEY RESULTS: The human GIPR is more prone to internalization than rodent GIPRs. Despite similar agonist affinities and potencies for Gαs activation, especially, the mouse GIPR shows reduced receptor desensitization, internalization and beta-arrestin recruitment. Using an enzyme-stabilized, long-acting GIP analogue, the species differences were even more pronounced. 'Tail-swapped' human, rat and mouse GIPRs were all fully functional in their Gαs coupling, and the mouse GIPR regained internalization and beta-arrestin 2 recruitment properties with the human tail. The human GIPR lost the ability to recruit beta-arrestin 2 when its own C-terminus was replaced by the rat or mouse tail. CONCLUSIONS AND IMPLICATIONS: Desensitization of the human GIPR is dependent on the C-terminal tail. The species-dependent functionality of the C-terminal tail and the different species-dependent internalization patterns, especially between human and mouse GIPRs, are important factors influencing the preclinical evaluation of GIPR-targeting therapeutic compounds.

18.
Expert Opin Pharmacother ; 25(2): 131-138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299476

RESUMO

INTRODUCTION: Obesity, marked by abnormal fat accumulation, poses significant health risks, necessitating effective therapeutic interventions. The focus of this review is to elucidate the importance of glucagon-like peptide 1 (GLP-1) receptor-binding medications in addressing obesity-related health deteriorations. AREAS COVERED: Exploring the mechanisms, efficacy, and safety profiles, this review comprehensively assesses medications selectively or non-selectively binding the GLP-1 receptor for obesity treatment. A meticulous analysis of phase 2 and phase 3 data positions retatrutide, CagriSema, survudotide, tirzepatide, semaglutide, and liraglutide in order of effectiveness. While showcasing their efficacy and safety, the review acknowledges the ongoing phase 3 studies, highlighting the need for further exploration of contraindications, dosage, and potential adverse effects to inform personalized treatment decisions. EXPERT OPINION: The ongoing anticipation of long-term benefits, particularly sustained weight loss and cardiovascular outcomes, underscores the significance of future treatment algorithms for addressing the disease of obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Humanos , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Obesidade/tratamento farmacológico , Liraglutida/efeitos adversos
19.
Mol Metab ; : 102006, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128651

RESUMO

OBJECTIVES: Obesity represents a global health crisis with significant patient burdens and healthcare costs. Despite the advances with glucagon-like peptide-1- (GLP-1) receptor agonists in treating obesity, unmet needs remain. This study characterizes a novel glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide antagonist, AT-7687, evaluating its potential to enhance obesity treatment. METHODS: We assessed the in vitro potency and pharmacokinetics of AT-7687, alongside its therapeutic effects when administered subcutaneously (SC) alone and in combination with liraglutide to high-fat-diet-fed obese non-human primates (NHP). The study spanned a 42-day treatment period and a 15-day washout period. RESULTS: AT-7687 demonstrated a subnanomolar cAMP antagonistic potency (pKB of 9.5) in HEK-293 cells and a 27.4 h half-life in NHPs. It effectively maintained weight stability in obese monkeys, whereas placebo recipients had an 8.6% weight increase by day 42 (P = 0.01). Monotherapy with liraglutide resulted in a 12.4% weight reduction from placebo (P = 0.03) and combining AT-7687 with liraglutide led to a 16.3% weight reduction (P = 0.0002). The combination therapy significantly improved metabolic markers, reducing insulin levels by 52% (P = 0.008), glucose by 30% (P = 0.02), triglycerides by 39% (P = 0.05), total cholesterol by 29% (P = 0.03), and LDL cholesterol by 48% (P = 0.003) from placebo. AT-7687 treatment was well tolerated and not associated with any side effects. CONCLUSIONS: This study underscores the potential of AT-7687 as a promising addition to current obesity treatments.

20.
Diabetol Int ; 15(3): 362-369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39101188

RESUMO

Glucagon has many functions: it promotes glucose production, fatty acid oxidation, thermogenesis, energy consumption, lipolysis, and myocardial contraction, and suppresses lipogenesis, appetite, and gastrointestinal motility. Which of these functions are physiological and which are pharmacological is not fully understood. Although the Mercodia sandwich ELISA provides significantly higher specificity of glucagon measurement than does conventional competitive RIA, it cannot provide accurate plasma glucagon values in the presence of elevated cross-reacting plasma glicentin. This occurs in patients post-pancreatectomy or bariatric surgery and in around 30% of outpatients suspected for glucose intolerance who have not had surgery. Thus, our newly developed sandwich ELISA with higher specificity and higher sensitivity than the Mercodia sandwich ELISA is needed for accurate measurements of plasma glucagon in diabetic patients. It is expected that the new sandwich ELISA will contribute to personalized medicine for diabetes by its use in clinical tests to accurately diagnose the conditions of diabetic patients in order to design better individual treatment strategies. Meanwhile, clinical trials are being conducted worldwide to apply glucagon/GLP-1 receptor dual agonists and glucagon/GLP-1/GIP receptor triagonists to the treatment of obesity, fatty liver, and diabetes. Most clinical trials have shown that both types of drugs have stronger effects on weight reduction, improving fatty liver, and glucose tolerance than do the single GLP-1 receptor agonists. Glucagon is expected to be used as a new diagnostic marker and in a new therapeutic strategy based on a true understanding of its physiological and pharmacological functions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa