Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732205

RESUMO

The tumor microenvironment is affected by reactive oxygen species and has been suggested to have an important role in ovarian cancer (OC) tumorigenesis. The role of glutathione transferases (GSTs) in the maintenance of redox balance is considered as an important contributing factor in cancer, including OC. Furthermore, GSTs are mostly encoded by highly polymorphic genes, which further highlights their potential role in OC, known to originate from accumulated genetic changes. Since the potential relevance of genetic variations in omega-class GSTs (GSTO1 and GSTO2), with somewhat different activities such as thioltransferase and dehydroascorbate reductase activity, has not been clarified as yet in terms of susceptibility to OC, we aimed to investigate whether the presence of different GSTO1 and GSTO2 genetic variants, individually or combined, might represent determinants of risk for OC development. Genotyping was performed in 110 OC patients and 129 matched controls using a PCR-based assay for genotyping single nucleotide polymorphisms. The results of our study show that homozygous carriers of the GSTO2 variant G allele are at an increased risk of OC development in comparison to the carriers of the referent genotype (OR1 = 2.16, 95% CI: 0.88-5.26, p = 0.08; OR2 = 2.49, 95% CI: 0.93-6.61, p = 0.06). Furthermore, individuals with GST omega haplotype H2, meaning the concomitant presence of the GSTO1*A and GSTO2*G alleles, are more susceptible to OC development, while carriers of the H4 (*A*A) haplotype exhibited lower risk of OC when crude and adjusted haplotype analysis was performed (OR1 = 0.29; 95% CI: 0.12-0.70; p = 0.007 and OR2 = 0.27; 95% CI: 0.11-0.67; p = 0.0054). Overall, our results suggest that GSTO locus variants may confer OC risk.


Assuntos
Alelos , Predisposição Genética para Doença , Glutationa Transferase , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Neoplasias Ovarianas/genética , Glutationa Transferase/genética , Pessoa de Meia-Idade , Genótipo , Adulto , Idoso , Estudos de Casos e Controles , Frequência do Gene
2.
Biochem Biophys Res Commun ; 590: 7-13, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959192

RESUMO

Contamination of drinking water with toxic inorganic arsenic is a major public health issue. The mechanisms of enzymes and transporters in arsenic elimination are therefore of interest. The human omega-class glutathione transferases have been previously shown to possess monomethylarsonate (V) reductase activity. To further understanding of this activity, molecular dynamics of human GSTO1-1 bound to glutathione with a monomethylarsonate isostere were simulated to reveal putative monomethylarsonate binding sites on the enzyme. The major binding site is in the active site, adjacent to the glutathione binding site. Based on this and previously reported biochemical data, a reaction mechanism for this enzyme is proposed. Further insights were gained from comparison of the human omega-class GSTs to homologs from a range of animals.


Assuntos
Glutationa Transferase/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Glutationa Transferase/química , Humanos , Modelos Moleculares
3.
Biochem Biophys Res Commun ; 524(4): 936-942, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32057363

RESUMO

Insulin biosynthesis and secretion by pancreatic ß cells are critical for the maintenance of blood glucose homeostasis. Here, we show that the expression of glutathione S-transferase omega-1 (GSTO1) is upregulated in the primary islet cells of diabetic Goto-Kakizaki (GK) rats. Knocking out GSTO1 upregulated insulin transcripts and increased the insulin content in both INS-1 cells and primary islet cells. In contrast, overexpression of GSTO1 reduced the insulin content. Furthermore, knocking out GSTO1 increased the expression of pancreatic duodenal homeobox-1 (PDX1) at both the transcription and protein levels. These results indicate that GSTO1 may be involved in the regulation of insulin biosynthesis by modulating the transcriptional expression of PDX1.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Vias Biossintéticas , Linhagem Celular , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Técnicas de Inativação de Genes , Insulina/genética , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Ratos , Ativação Transcricional , Regulação para Cima
4.
Mol Cell Probes ; 48: 101449, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525447

RESUMO

BACKGROUND: Glutathione S-transferase omega 1 (GSTO1), as a member of the glutathione S-transferase (GST) family genes, has been discovered to be up-regulated in several cancer cell lines which exhibited strong aggressiveness. However, the function of GSTO1 on cutaneous malignant melanoma (CMM) has not been illuminated. METHODS: Outcome of expression level and prognosis of GSTO1 were obtained from Oncomine and TCGA database. The specific effects of GSTO1 on the characteristics and regulatory mechanism of CMM cells were demonstrated by cell counting kit-8, colony formation, flow cytometry, and transwell assays in vitro. Western blot was employed to analyze the expression of proliferating cell nuclear antigen (PCNA), p53 and epithelial-to-mesenchymal (EMT) related proteins. RESULTS: We observed that GSTO1 was up-regulated in CMM samples when compared with the corresponding controls. Moreover, patients in CMM with high expression of GSTO1 were more likely to have a poor prognosis. Through in vitro experiments, silenced GSTO1 resulted in inhibition of CMM cells growth and aggressiveness, increased cell apoptosis, and blocked cell cycle. Finally, the expression of PCNA, p53 and EMT-related proteins were changed due to reduction of GSTO1. CONCLUSIONS: To sum up, our outcomes exhibited that weakening GSTO1 reduced the proliferation and mobility of CMM cells, increased the apoptosis ability of CMM cells, and arrested cell cycle at G1 phase, which can be achieved by affecting the expression of PCNA, p53 and the EMT process. This discovery provided a new perspective for elucidating the mechanism of CMM, and offered theoretical support for searching clinical therapeutic targets in the future.


Assuntos
Glutationa Transferase/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Apoptose/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Melanoma/patologia , Prognóstico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/fisiologia , Melanoma Maligno Cutâneo
5.
Angew Chem Int Ed Engl ; 58(34): 11918-11922, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31291041

RESUMO

Cyclopropenes are an important new addition to the portfolio of functional groups that can be used for bioorthogonal couplings. The inert nature of these highly strained compounds in complex biological systems is almost counterintuitive given their established electrophilic properties in organic synthesis. Here we provide the first demonstration of a cyclopropene that is capable of direct conjugation to protein targets in cells and show that this compound preferentially alkylates the active site cysteine of glutathione S-transferase omega-1 (GSTO1).


Assuntos
Ciclopropanos/farmacologia , Cisteína/metabolismo , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Domínio Catalítico , Cisteína/química , Glutationa/química , Células HCT116 , Humanos
6.
Tohoku J Exp Med ; 246(1): 35-44, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224590

RESUMO

Glutathione S-transferases (GSTs), a superfamily of multifunctional enzymes, play an important role in the onset and progression of renal cell carcinoma (RCC). However, novel GST omega class (GSTO), consisting of GSTO1-1 and GSTO2-2 isoenzymes, has not been studied in RCC yet. Two coding single nucleotide polymorphisms (SNPs) supposedly affect their functions: GSTO1*C419A (rs4925) causing alanine to aspartate substitution (*A140D) and GSTO2*A424G (rs156697) causing asparagine to aspartate substitution (*N142D), and have been associated with several neurodegenerative diseases and cancers. Functional relevance of yet another GSTO2 polymorphism, identified at the 5' untranslated (5'UTR) gene region (GSTO2*A183G, rs2297235), has not been clearly discerned so far. Therefore, we aimed to assess the effect of specific GSTO1 and GSTO2 gene variants, independently and in interaction with established risk factors (smoking, obesity and hypertension) on the risk for the most aggressive RCC subtype, the clear cell RCC (ccRCC). Genotyping was performed in 239 ccRCC patients and 350 matched controls, while plasma levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were determined by ELISA. As a result, combined effect of all three variant genotypes exhibited almost 3-fold risk of RCC development. Additionally, this association was confirmed at the haplotype level [variant GSTO1*A/GSTO2*G (rs156697)/GSTO2*G (rs2297235) haplotype], suggesting a potential role of those variants in propensity to RCC. Regarding the gene-environment interactions, variant GSTO2*G (rs156697) homozygous smokers are at higher ccRCC risk. Association in terms of oxidative DNA damage was found for GSTO2 polymorphism in 5'UTR and 8-OHdG. In conclusion, the concomitance of GSTO polymorphisms may influence ccRCC risk.


Assuntos
Carcinoma de Células Renais/genética , Predisposição Genética para Doença , Glutationa Transferase/genética , Neoplasias Renais/genética , Polimorfismo de Nucleotídeo Único/genética , 8-Hidroxi-2'-Desoxiguanosina , Estudos de Casos e Controles , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Haplótipos/genética , Humanos , Hipertensão/genética , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco
7.
J Cell Sci ; 128(10): 1982-90, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908843

RESUMO

Macrophages mediate innate immune responses that recognise foreign pathogens, and bacterial lipopolysaccharide (LPS) recruits a signalling pathway through Toll-like receptor 4 (TLR4) to induce pro-inflammatory cytokines and reactive oxygen species (ROS). LPS activation also skews the metabolism of macrophages towards a glycolytic phenotype. Here, we demonstrate that the LPS-triggered glycolytic switch is significantly attenuated in macrophages deficient for glutathione transferase omega-1 (GSTO1, note that GSTO1-1 refers to the dimeric molecule with identical type 1 subunits). In response to LPS, GSTO1-1-deficient macrophages do not produce excess lactate, or dephosphorylate AMPK, a key metabolic stress regulator. In addition, GSTO1-1-deficient cells do not induce HIF1α, which plays a key role in maintaining the pro-inflammatory state of activated macrophages. The accumulation of the TCA cycle intermediates succinate and fumarate that occurs in LPS-treated macrophages was also blocked in GSTO1-1-deficient cells. These data indicate that GSTO1-1 is required for LPS-mediated signalling in macrophages and that it acts early in the LPS-TLR4 pro-inflammatory pathway.


Assuntos
Proteínas de Transporte/metabolismo , Glutationa Transferase/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Proteínas de Transporte/genética , Glutationa Transferase/deficiência , Glutationa Transferase/genética , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética
8.
Toxicol Mech Methods ; 27(6): 467-475, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28436716

RESUMO

Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.


Assuntos
Arsênio/toxicidade , Metilação de DNA/efeitos dos fármacos , Glutationa Transferase/genética , Polimorfismo de Nucleotídeo Único , Dermatopatias/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Arsênio/farmacocinética , Feminino , Humanos , Índia , Masculino , Índice de Gravidade de Doença , Dermatopatias/genética , Poluentes Químicos da Água/farmacocinética
9.
Anal Biochem ; 469: 12-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25283130

RESUMO

The unusual glutathione S-transferase GSTO1 reduces, rather than conjugates, endo- and xenobiotics, and its role in diverse cellular processes has been proposed. GSTO1 has been assayed spectrophotometrically by measuring the disappearance of its substrate, S-(4-nitrophenacyl)glutathione (4-NPG), in the presence of 2-mercaptoethanol that regenerates GSTO1 from its mixed disulfide. To assay GSTO1 in rat liver cytosol, we have developed a high-performance liquid chromatography (HPLC)-based procedure with two main advantages: (i) it measures the formation of the 4-NPG reduction product 4-nitroacetophenone, thereby offering improved sensitivity and accuracy, and (ii) it can use glutathione, the physiological reductant of GSTO1, which is impossible to do with the spectrophotometric procedure. Using the new assay, we show that (i) the GSTO1-catalyzed reduction of 4-NPG in rat liver cytosol also yields 1-(4-nitrophenyl)ethanol, whose formation from 4-nitroacetophenone requires NAD(P)H; (ii) the two assays measure comparable activities with 2-mercaptoethanol or tris(2-carboxyethyl)phosphine used as reductant; (iii) the cytosolic reduction of 4-NPG is inhibited by GSTO1 inhibitors (KT53, 5-chloromethylfluorescein diacetate, and zinc), although the inhibitory effect is strikingly influenced by the type of reductant in the assay and by the sequence of reductant and inhibitor addition. Characterization of GSTO1 inhibitors with the improved assay provides better understanding of interaction of these chemicals with the enzyme.


Assuntos
Cromatografia Líquida de Alta Pressão , Glutationa Transferase/metabolismo , Glutationa/análogos & derivados , Acetofenonas/química , Acetofenonas/metabolismo , Animais , Biocatálise , Citosol/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Fluoresceínas/química , Fluoresceínas/metabolismo , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/antagonistas & inibidores , Cinética , Fígado/enzimologia , Masculino , Mercaptoetanol/química , NAD/química , NAD/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Espectrofotometria
10.
Neurol Sci ; 36(10): 1785-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25981226

RESUMO

Glutathione S-transferase (GST) was suggested as an important contributor to Alzheimer's disease (AD). The GSTs polymorphisms have been investigated as candidate genetic risk factors for AD, yet results remained uncertain. Therefore, we performed a meta-analysis to clarify the relationship of GSTs polymorphisms with the occurrence of AD. PubMed, Embase, Cochrane library and Alzgene databases were searched and potential literatures were selected. Pooled analyses and subgroup analyses were conducted, and also publication bias tests and cumulative meta-analysis. This meta-analysis suggested null associations between polymorphisms of GSTM1, GSTT1, GSTM3, GSTP1, GSTO1 and AD risk. GSTs variants may not have an impact on the morbidity of Alzheimer's disease. Further well designed researches are required to confirm these findings of the current study.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glutationa Transferase/genética , Polimorfismo Genético , Doença de Alzheimer/epidemiologia , Humanos , Fatores de Risco
11.
Toxicol Appl Pharmacol ; 274(1): 117-23, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24239724

RESUMO

To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969µg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too.


Assuntos
Arsênio/urina , Povo Asiático/etnologia , Povo Asiático/genética , Água Potável/análise , Metiltransferases/genética , Poluentes Químicos da Água/urina , Adolescente , Adulto , Idoso , Arsênio/efeitos adversos , Criança , Pré-Escolar , Água Potável/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Vigilância da População/métodos , Poluentes Químicos da Água/efeitos adversos , Abastecimento de Água/análise , Adulto Jovem
12.
Mol Oncol ; 18(8): 1866-1884, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750006

RESUMO

Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , Glutationa Transferase , Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Masculino , Animais , Camundongos
13.
Clin Nutr ; 40(5): 2683-2696, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933734

RESUMO

BACKGROUND: Zinc deficiency is a worldwide public health problem. Currently, there are no established biomarkers available for the accurate diagnosis of zinc-deficiency in individuals. Additionally, a comprehensive view of the adverse effects of zinc deficiency is lacking. Our aim was to identify superior biomarkers of zinc deficiency and uncover the adverse effects of zinc deficiency. METHODS: We performed multi-omics analysis using serum proteomics-metabolomics and liver proteomics on zinc-deficient rats to identify candidate biomarkers and reveal the associated adverse effects of zinc deficiency. Secondly, the candidate biomarkers were validated in two zinc-deficient populations and an RCT zinc supplementation trial on a zinc-deficient population. RESULTS: Our integrated multi-omics approach revealed numerous biomarkers (>2000) and glutathione metabolism as the most important changed pathway in zinc deficiency. Three candidate biomarkers from glutathione metabolism were validated in repeated zinc-deficient rats by quantitative analysis. Only glutathione sulfotransferase omega-1 (GSTO1) (among 3 candidate biomarkers) was validated in the two zinc-deficient populations and zinc-supplemented population. Compared with serum zinc, serum GSTO1 yielded a better response to zinc supplementation and a higher correlation coefficient with zinc intake and the AUC value and has the potential for diagnosing zinc deficiency. By integrated multi-omics, we identified both established and novel adverse effects of zinc deficiency. CONCLUSIONS: Our integrated multi-omics analysis revealed more complete information about zinc deficiency; GSTO1 was found to be a reliable potential biomarker for diagnosis of zinc deficiency. This trial is registered at http://www.chictr.org.cn/registry.aspx as ChiCTR1900028162.


Assuntos
Metabolômica/métodos , Proteômica/métodos , Zinco/deficiência , Adulto , Animais , Biomarcadores/sangue , Criança , Pré-Escolar , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Zinco/metabolismo
14.
Front Oncol ; 11: 714421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722260

RESUMO

INTRODUCTION: Glutathione S-transferase (GST) gene deletion or polymorphic sequence variations lead to decreased enzyme activity that influences susceptibility and response to chemotherapy in acute lymphoblastic leukemia (ALL). This case-control study investigated the association of GST gene polymorphisms with the etiology and therapeutic outcome of B-ALL among Kashmiri population. METHODS: A total of 300 individuals including 150 newly diagnosed B-ALL patients and an equal number of age and gender matched controls were genotyped for five GST gene polymorphisms by polymerase chain reaction-restriction fragment length polymorphism technique (PCR-RFLP) and multiplex PCR techniques. RESULTS: Higher frequency of GSTT1 null, GSTO2-AG, and GSTO2-GG genotypes was observed in ALL cases compared to controls that associated significantly with ALL risk (GSTT1 null: OR = 2.93, p = 0.0001; GSTO2-AG: OR = 2.58, p = 0.01; GSTO2-GG: OR = 3.13, p = 0.01). GSTM1, GSTP1, and GSTO1 SNPs showed no significant association (p > 0.05). Combined genotype analysis revealed significant association of GSTT1 null/GSTM1 null (OR = 4.11, p = 0.011) and GSTT1 null/GSTP1-AG (OR = 4.93, p = 0.0003) with B-ALL susceptibility. Haplotype analysis of rs4925 and rs156697 revealed that carriers of CG haplotype had increased risk of B-ALL (p = 0.04). Kaplan-Meier plots revealed significantly inferior 3-year disease-free survival for GSTO2-GG carriers (p = 0.002). Multivariate analysis confirmed GSTO2-GG as an independent poor prognostic factor for DFS (HR = 4.5, p = 0.034). Among combined genotypes, only GSTT1 null/GSTP1-AG associated significantly with poorer DFS rates (p = 0.032). CONCLUSION: This study demonstrated that GSTT1 null individually or in combination with GSTM1null and GSTP1-AG genotypes associated with increased B-ALL risk. Also, rs156697 variant genotypes (AG and GG) associated with B-ALL, whereas the GG genotype of rs156697 influenced the treatment outcome.

15.
Int J Lab Hematol ; 43(5): 1000-1008, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33470551

RESUMO

INTRODUCTION: Glutathione S-transferase (GST) gene deletion or polymorphic sequence variations lead to decreased enzyme activity that influences susceptibility and response to tyrosine kinase inhibitors in chronic myeloid leukemia (CML). We aimed to analyze relation of different GST gene sequence variants with susceptibility and response to Imatinib in CML. MATERIAL AND METHODS: A total of 150 CML cases and equal number of age and gender matched healthy controls were genotyped for five GST polymorphisms by multiplex-PCR and PCR-RFLP techniques. BCR-ABL1 transcripts were quantified by quantitative Real Time PCR (qRT-PCR). RESULTS: GSTT1, GSTO1, and GSTO2 SNPs revealed no association, while as GSTM1null genotype was observed to protect against the development of CML (OR = 0.53, P = .01). GSTP1 variant genotypes AG (OR = 2.1, P = .003) and GG (OR = 5.6, P < .001), significantly associated with increased risk of CML. Combined genotype analysis showed protective impact of GSTT1present /GSTM1null (OR = 0.44, P = .003) while as GSTT1present /GSTP1-GG (OR = 6.92, P < .001) and GSTM1present /GSTP1-GG (OR = 6.33, P < .001), significantly increased CML risk. GSTM1null genotype individually and in combination with GSTT1present associated with superior rate of major molecular response (MMR) and event free survival (EFS) (log-rank P = .029). GSTO2-AG+GG genotype associated with significantly inferior MMR rates at 3, 6, and 12 months. Also, patients with GSTO2-GG genotype showed significantly reduced EFS (log-rank P = .025). Multivariate analysis confirmed GSTM1null as a better (HR:0.19, P = .029) and GSTO2-GG genotype as an independent poor prognostic factor (HR:2.29, P = .037). CONCLUSION: GSTM1null genotype seems to have a better prognostic role while GSTP1 variants significantly increase CML risk. Also, results support a correlation between disease outcome and GSTO2 polymorphism.


Assuntos
Antineoplásicos/uso terapêutico , Glutationa Transferase/genética , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Adulto , Feminino , Deleção de Genes , Humanos , Índia/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Medição de Risco , Resultado do Tratamento
16.
Vet Parasitol ; 297: 109114, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32386865

RESUMO

The glutathione-S-transferases omega (GSTO) are multifunctional enzymes involved in cellular defense. During the nurse cell (NC) formation in Trichinella spiralis infection, the structural and regulatory genes of the skeletal muscle cell are downregulated and a new phenotype is acquired which advances parasite growth and survival. Previous studies showed that the GSTO1 is overexpressed in the NC during T. spiralis infection. To clarify the role of GSTO1 during NC formation, we evaluated the production of this enzyme by immunohistochemistry (IHC) in the diaphragms of mice experimentally infected with T. spiralis at 15, 28 and 60 days post infection (dpi); phosphorylation of Akt (p-Akt) and JNK1 (p-JNK1) were also evaluated. Furthermore, we evaluated the in vitro effects of T. spiralis excretory/secretory (ES) products from muscle larvae on specific functions (viability, proliferative response, apoptosis) in two cell lines (HeLa and U937), as well as its ability to induce GSTO1, p-AkT, p-ERK1/2 and p-JNK1. Results showed that GSTO1 was elevated in NC present in the diaphragms of T. spiralis experimentally infected mice at 15 dpi and progressively increased up to 60 dpi. The activation pattern of Akt in NC was similar to that of GSTO1, whereas JNK1 was never phosphorylated. ES induced a dose-dependent proliferative response in U937 cells, at 24 h and 48 h of treatment, but not in HeLa cells. However, after 72 h following treatment, significant cell death was observed in both cell lines at all doses. The apoptotic index (a.i.) was significantly higher than in untreated cells in both cell lines but only at the highest concentration of ES tested. Furthermore, Western Blots revealed that cells treated with ES for 24, 48 and 72 h, exhibited time-dependent overexpression of GSTO1, whereas p-Akt appeared only after 24 h of treatment. The p-ERK-1/2 peaked at 24 h then declined at 48 h and 72 h after treatment; however, it remained significantly higher than in untreated cells. No changes were observed in p-JNK1 at 24 and 48 h after treatment but a sharp increase in p-JNK1 was observed at 72 h. Also in HeLa cells, ES induced a small but significant increase in GSTO1 expression after 24 and 48 h of treatment where p-JNK1 was present only after 72 h of treatment. In conclusion, T. spiralis ES can reproduce in vitro the modifications observed inside the NC during experimental infection in mice.


Assuntos
Proteínas de Transporte/metabolismo , Glutationa Transferase/metabolismo , Triquinelose , Animais , Antígenos de Helmintos , Diafragma , Células HeLa , Proteínas de Helminto , Humanos , Larva , Camundongos , Trichinella spiralis , Triquinelose/veterinária
17.
J Cyst Fibros ; 20(6): 1053-1061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33583732

RESUMO

BACKGROUND: Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS: Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS: Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS: Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.


Assuntos
Proteínas de Transporte/genética , Fibrose Cística/enzimologia , Fibrose Cística/genética , Glutationa Transferase/genética , Polimorfismo de Nucleotídeo Único , Animais , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Índice de Gravidade de Doença
18.
Rep Biochem Mol Biol ; 9(1): 8-13, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32821746

RESUMO

BACKGROUND: Glutathione S-transferases (GSTs) protect cells from oxidative stress (OS). In humans, the GST omega class contains two expressed genes, GSTO1 and GSTO2. Because OS is involved in the pathogenesis of polycystic ovary syndrome (PCOS), the aim of this study was to investigate the relationship between GSTO1 A140D (rs4925) and GSTO2 N142D (rs156697) polymorphisms in PCOS patients. METHODS: 175 PCOS patients and 161 healthy controls were selected among women in Kermanshah province, Iran. GSTO1 and GSTO2 were genotyped using allele-specific PCR (AS-PCR) and PCR-RFLP, respectively. RESULTS: For GSTO1, the DD genotype and the D allele led to 2.17- (P= 0.02) and 1.5-fold (P= 0.01) increases, respectively, in the odds ratios for PCOS. No significant difference was found between control and patient groups for the GSTO2 N142D genotype or allele frequency. GSTO1 and GSTO2 genotype interaction analysis showed that individuals with the GSTO1 AD or DD genotypes and the GSTO2 NN or DN genotypes had a 1.53-fold (P= 0.007) increase in PCOS risk over GSTO1 AA and GSTO2 DD individuals. CONCLUSION: The GSTO1 A140D polymorphism is a risk factor for PCOS.

19.
Chemosphere ; 226: 201-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927672

RESUMO

The mechanism of GSTO1, as a high-risk factor for neurological damage, in sodium fluoride (NaF)-induced learning and memory impairment remained still unclear. Hence, in this study, we used the siRNA-GSTO1 HT22 model to explore the effect of NaF and siRNA-GSTO1 on the viability, and proliferation rate of HT22 cells, as well as the mRNA and protein expression levels of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), neural cell adhesion molecule (NCAM), stem cell factor (SCF) and brain-derived neurotrophic factor (BDNF). The results of MTT showed that 10-3, 10-4, and 10-5 moL/L sodium fluoride (NaF) exposure could significantly promote the proliferation of HT22 cells at 24 h, 36 h, and 48 h, respectively. In addition, our results showed that exposure to 10-3, 10-4, and 10-5 moL/l NaF increased GSTO1 mRNA and protein expression, but decreased CREB and BDNF expression levels in a dose and time-dependent manner. The mRNA and protein expressions of GSTO1, CREB and BDNF were significantly decreased in the siRNA-GSTO1 and NaF + siRNA-GSTO1 group (P < 0.05). We have shown that various NaF doses affected the learning and memory ability by down-regulation the expressions of CREB, BDNF, NCAM and SCF. In summary, we concluded that GSTO1 plays a mediator role in NaF-induced neurological damage.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas de Transporte/fisiologia , Glutationa Transferase/fisiologia , Hipocampo/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa , Fluoreto de Sódio/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Deficiências da Aprendizagem/induzido quimicamente , Transtornos da Memória/induzido quimicamente , Camundongos , Moléculas de Adesão de Célula Nervosa/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Fator de Células-Tronco/efeitos dos fármacos , Fator de Células-Tronco/metabolismo
20.
Cell Rep ; 29(1): 151-161.e5, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577945

RESUMO

The NLRP3 inflammasome is a cytosolic complex sensing phagocytosed material and various damage-associated molecular patterns, triggering production of the pro-inflammatory cytokines interleukin-1 beta (IL)-1ß and IL-18 and promoting pyroptosis. Here, we characterize glutathione transferase omega 1-1 (GSTO1-1), a constitutive deglutathionylating enzyme, as a regulator of the NLRP3 inflammasome. Using a small molecule inhibitor of GSTO1-1 termed C1-27, endogenous GSTO1-1 knockdown, and GSTO1-1-/- mice, we report that GSTO1-1 is involved in NLRP3 inflammasome activation. Mechanistically, GSTO1-1 deglutathionylates cysteine 253 in NIMA related kinase 7 (NEK7) to promote NLRP3 activation. We therefore identify GSTO1-1 as an NLRP3 inflammasome regulator, which has potential as a drug target to limit NLRP3-mediated inflammation.


Assuntos
Glutationa Transferase/metabolismo , Inflamassomos/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Citocinas/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa