Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35613620

RESUMO

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Assuntos
Neurofibromina 1 , Proteínas Proto-Oncogênicas A-raf , Proteínas Ativadoras de ras GTPase , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas A-raf/metabolismo , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/metabolismo
2.
EMBO J ; 42(2): e112372, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36472247

RESUMO

Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.


Assuntos
Bacteroides , Fator G para Elongação de Peptídeos , Animais , Camundongos , Bacteroides/genética , Bacteroides/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo
3.
Circ Res ; 135(2): e24-e38, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38813686

RESUMO

BACKGROUND: Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to ß-adrenergic receptor (ß-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. ß1-AR (ß1-adrenergic receptor) and ß2-ARs (ß2-adrenergic receptor) are the 2 major subtypes of ß-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of ß1-ARs drives detrimental cardiac remodeling while ß2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through ß2-ARs remain unclear. METHODS: ß2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of ß2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS: Here, we show that ß2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for ß2-AR-mediated phospholipase C inhibition requires internalization of ß2-AR, activation of Gi and Gßγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-ß1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS: This reveals a mechanism for ß2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of ß2-AR signaling on the development of heart failure.


Assuntos
Miócitos Cardíacos , Receptores Adrenérgicos beta 2 , Transdução de Sinais , Animais , Receptores Adrenérgicos beta 2/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos , Células Cultivadas , Ratos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Camundongos Endogâmicos C57BL , Complexo de Golgi/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Ratos Sprague-Dawley , Masculino , Proteína Quinase C/metabolismo , Animais Recém-Nascidos , Endocitose , Camundongos Knockout
4.
Proc Natl Acad Sci U S A ; 120(27): e2305899120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364095

RESUMO

Microtubules (MTs) are large cytoskeletal polymers, composed of αß-tubulin heterodimers, capable of stochastically converting from polymerizing to depolymerizing states and vice versa. Depolymerization is coupled with hydrolysis of guanosine triphosphate (GTP) within ß-tubulin. Hydrolysis is favored in the MT lattice compared to a free heterodimer with an experimentally observed rate increase of 500- to 700-fold, corresponding to an energetic barrier lowering of 3.8 to 4.0 kcal/mol. Mutagenesis studies have implicated α-tubulin residues, α:E254 and α:D251, as catalytic residues completing the ß-tubulin active site of the lower heterodimer in the MT lattice. The mechanism for GTP hydrolysis in the free heterodimer, however, is not understood. Additionally, there has been debate concerning whether the GTP-state lattice is expanded or compacted relative to the GDP state and whether a "compacted" GDP-state lattice is required for hydrolysis. In this work, extensive quantum mechanics/molecular mechanics simulations with transition-tempered metadynamics free-energy sampling of compacted and expanded interdimer complexes, as well as a free heterodimer, have been carried out to provide clear insight into the GTP hydrolysis mechanism. α:E254 was found to be the catalytic residue in a compacted lattice, while in the expanded lattice, disruption of a key salt bridge interaction renders α:E254 less effective. The simulations reveal a barrier decrease of 3.8 ± 0.5 kcal/mol for the compacted lattice compared to a free heterodimer, in good agreement with experimental kinetic measurements. Additionally, the expanded lattice barrier was found to be 6.3 ± 0.5 kcal/mol higher than compacted, demonstrating that GTP hydrolysis is variable with lattice state and slower at the MT tip.


Assuntos
Microtúbulos , Tubulina (Proteína) , Guanosina Trifosfato , Tubulina (Proteína)/química , Hidrólise , Guanosina Difosfato/química , Microtúbulos/química
5.
J Biol Chem ; 300(2): 105650, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237681

RESUMO

Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(ß,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo , Espectroscopia de Ressonância Magnética , Transdução de Sinais , Mutação
6.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36866642

RESUMO

Microtubules are critical for a variety of important functions in eukaryotic cells. During intracellular trafficking, molecular motor proteins of the kinesin superfamily drive the transport of cellular cargoes by stepping processively along the microtubule surface. Traditionally, the microtubule has been viewed as simply a track for kinesin motility. New work is challenging this classic view by showing that kinesin-1 and kinesin-4 proteins can induce conformational changes in tubulin subunits while they are stepping. These conformational changes appear to propagate along the microtubule such that the kinesins can work allosterically through the lattice to influence other proteins on the same track. Thus, the microtubule is a plastic medium through which motors and other microtubule-associated proteins (MAPs) can communicate. Furthermore, stepping kinesin-1 can damage the microtubule lattice. Damage can be repaired by the incorporation of new tubulin subunits, but too much damage leads to microtubule breakage and disassembly. Thus, the addition and loss of tubulin subunits are not restricted to the ends of the microtubule filament but rather, the lattice itself undergoes continuous repair and remodeling. This work leads to a new understanding of how kinesin motors and their microtubule tracks engage in allosteric interactions that are critical for normal cell physiology.


Assuntos
Cinesinas , Tubulina (Proteína) , Microtúbulos , Proteínas Associadas aos Microtúbulos , Citoesqueleto
7.
Genes Cells ; 29(3): 217-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38229233

RESUMO

In eukaryotes, single cells in a population display different transcriptional profiles. One of the factors regulating this heterogeneity is the chromatin state in each cell. However, the mechanisms of epigenetic chromatin regulation of specific chromosomal regions remain unclear. Therefore, we used single-cell tracking system to analyze IMD2. IMD2 is located at the subtelomeric region of budding yeast, and its expression is epigenetically regulated by heterochromatin fluctuations. Treatment with mycophenolic acid, an inhibitor of de novo GTP biosynthesis, triggered a decrease in GTP, which caused heterochromatin fluctuations at the IMD2 locus. Interestingly, within individually tracked cells, IMD2 expression state underwent repeated switches even though IMD2 is positioned within the heterochromatin region. We also found that 30% of the cells in a population always expressed IMD2. Furthermore, the addition of nicotinamide, a histone deacetylase inhibitor, or guanine, the GTP biosynthesis factor in salvage pathway of GTP biosynthesis, regulated heterogeneity, resulting in IMD2 expression being uniformly induced or suppressed in the population. These results suggest that gene expression heterogeneity in the IMD2 region is regulated by changes in chromatin structure triggered by slight decreases in GTP.


Assuntos
Proteínas de Saccharomyces cerevisiae , Síndrome de Wiskott-Aldrich , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Guanosina Trifosfato/metabolismo , Regulação Fúngica da Expressão Gênica
8.
Genes Cells ; 29(2): 150-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009721

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in the de novo GTP biosynthesis pathway. Recent studies suggest that IMPDH2, an isoform of IMPDH, can localize to specific subcellular compartments under certain conditions and regulate site-specific GTP availability and small GTPase activity in invasive cancer cells. However, it is unclear whether IMPDH2 plays a site-specific regulatory role in subcellular functions in healthy cells. In this study, we focused on brain cells and examined the localization pattern of IMPDH2. We discovered that IMPDH2 forms localized spots in the astrocytes of the adult mouse hippocampus. Further analysis of spot distribution in primary astrocyte cultures revealed that IMPDH2 spots are predominantly localized on branching sites and distal ends of astrocyte stem processes. Our findings suggest a potential unidentified role for IMPDH2 and GTP synthesis specifically at specialized nodes of astrocyte branches.


Assuntos
Astrócitos , IMP Desidrogenase , Animais , Camundongos , Astrócitos/metabolismo , Guanosina Trifosfato , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , IMP Desidrogenase/ultraestrutura , Isoformas de Proteínas
9.
Cell Mol Life Sci ; 81(1): 210, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717553

RESUMO

The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.


Assuntos
Proliferação de Células , IMP Desidrogenase , Animais , Feminino , Camundongos , Dano ao DNA , Desenvolvimento Fetal/genética , Guanosina Trifosfato/metabolismo , IMP Desidrogenase/metabolismo , IMP Desidrogenase/genética , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Estruturas Celulares/metabolismo
10.
Bioessays ; 45(1): e2200081, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398561

RESUMO

Almost 40 years since the discovery of microtubule dynamic instability, the molecular mechanisms underlying microtubule dynamics remain an area of intense research interest. The "standard model" of microtubule dynamics implicates a "cap" of GTP-bound tubulin dimers at the growing microtubule end as the main determinant of microtubule stability. Loss of the GTP-cap leads to microtubule "catastrophe," a switch-like transition from microtubule growth to shrinkage. However, recent studies, using biochemical in vitro reconstitution, cryo-EM, and computational modeling approaches, challenge the simple GTP-cap model. Instead, a new perspective on the mechanisms of microtubule dynamics is emerging. In this view, highly dynamic transitions between different structural conformations of the growing microtubule end - which may or may not be directly linked to the nucleotide content at the microtubule end - ultimately drive microtubule catastrophe.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/química , Simulação por Computador , Guanosina Trifosfato , Nucleotídeos/análise
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996871

RESUMO

Microtubules (MTs) are polymers of αß-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.


Assuntos
Microscopia Crioeletrônica , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Humanos , Hidrólise , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/genética , Proteínas Recombinantes , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
12.
J Bacteriol ; 206(2): e0033123, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197635

RESUMO

The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.


Assuntos
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
13.
Mol Pharmacol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991745

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters or hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαßγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity, to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gßγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components, or in physiologically-relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. Significance Statement G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.

14.
J Cell Mol Med ; 28(11): e18443, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837873

RESUMO

The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.


Assuntos
Movimento Celular , Condrócitos , Microtia Congênita , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac1 de Ligação ao GTP , Animais , Feminino , Humanos , Masculino , Camundongos , Condrócitos/metabolismo , Condrócitos/citologia , Microtia Congênita/metabolismo , Microtia Congênita/genética , Microtia Congênita/patologia , Modelos Animais de Doenças , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
15.
J Cell Physiol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946197

RESUMO

The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.

16.
Cancer Metastasis Rev ; 42(4): 1155-1167, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37353690

RESUMO

Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.


Assuntos
Nucleosídeo NM23 Difosfato Quinases , Neoplasias , Humanos , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Dinaminas/metabolismo , Neoplasias/patologia , Membrana Celular/metabolismo , Guanosina Trifosfato
17.
RNA ; 28(11): 1509-1518, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130078

RESUMO

Pyrococcus horikoshii (Pho) RtcB exemplifies a family of binuclear transition metal- and GTP-dependent RNA ligases that join 3'-phosphate and 5'-OH ends via RtcB-(histidinyl-N)-GMP and RNA3'pp5'G intermediates. We find that guanylylation of PhoRtcB is optimal with manganese and less effective with cobalt and nickel. Zinc and copper are inactive and potently inhibit manganese-dependent guanylylation. We report crystal structures of PhoRtcB in complexes with GTP and permissive (Mn, Co, Ni) or inhibitory (Zn, Cu) metals. Zinc and copper occupy the M1 and M2 sites adjacent to the GTP phosphates, as do manganese, cobalt, and nickel. The identity/positions of enzymic ligands for M1 (His234, His329, Cys98) and M2 (Cys98, Asp95, His203) are the same for permissive and inhibitory metals. The differences pertain to: (i) the coordination geometries and phosphate contacts of the metals; and (ii) the orientation of the His404 nucleophile with respect to the GTP α-phosphate and pyrophosphate leaving group. M2 metal coordination geometry correlates with metal cofactor activity, whereby inhibitory Zn2 and Cu2 assume a tetrahedral configuration and contact only the GTP γ-phosphate, whereas Mn2, Co2, and Ni2 coordination complexes are pentahedral and contact the ß- and γ-phosphates. The His404-Nε-Pα-O(α-ß) angle is closer to apical in Mn (179°), Co (171°), and Ni (169°) structures than in Zn (160°) and Cu (155°) structures. The octahedral Mn1 geometry in our RtcB•GTP•Mn2+ structure, in which Mn1 contacts α-, ß-, and γ-phosphates, transitions to a tetrahedral configuration after formation of RtcB•(His404)-GMP•Mn2+ and departure of pyrophosphate.


Assuntos
Difosfatos , Manganês , Cátions Bivalentes , Níquel , Cobre , Guanosina Trifosfato , RNA Ligase (ATP)/genética , RNA/química , Zinco , Cobalto
18.
J Med Virol ; 96(4): e29555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546037

RESUMO

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Assuntos
Fator de Iniciação 4E em Eucariotos , Hesperidina , Vaccinia virus , Animais , Bovinos , Chlorocebus aethiops , Embrião de Galinha , Células Vero , Simulação de Acoplamento Molecular , Vaccinia virus/genética , Antivirais/farmacologia , RNA Mensageiro , Replicação Viral
19.
BMC Cancer ; 24(1): 71, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216883

RESUMO

BACKGROUND: Ras gene mutation and/or overexpression are drivers in the progression of cancers, including colorectal cancer. Blocking the Ras signaling has become a significant strategy for cancer therapy. Previously, we constructed a recombinant scFv, RGD-p21Ras-scFv by linking RGD membrane-penetrating peptide gene with the anti-p21Ras scFv gene. Here, we expressed prokaryotically RGD-p21Ras-scFv on a pilot scale, then investigated the anti-tumor effect and the mechanism of blocking Ras signaling. METHODS: The E. coli bacteria which could highly express RGD-p21Ras-scFv was screened and grown in 100 L fermentation tank to produce RGD-p21Ras-scFv on optimized induced expression conditions. The scFv was purified from E. coli bacteria using His Ni-NTA column. ELISA was adopted to test the immunoreactivity of RGD-p21Ras-scFv against p21Ras proteins, and the IC50 of RGD-p21Ras-scFv was analyzed by CCK-8. Immunofluorescence colocalization and pull-down assays were used to determine the localization and binding between RGD-p21Ras-scFv and p21Ras. The interaction forces between RGD-p21Ras-scFv and p21Ras after binding were analyzed by molecular docking, and the stability after binding was determined by molecular dynamics simulations. p21Ras-GTP interaction was detected by Ras pull-down. Changes in the MEK-ERK /PI3K-AKT signaling paths downstream of Ras were detected by WB assays. The anti-tumor activity of RGD-p21Ras-scFv was investigated by nude mouse xenograft models. RESULTS: The technique of RGD-p21Ras-scFv expression on a pilot scale was established. The wet weight of the harvested bacteria was 31.064 g/L, and 31.6 mg RGD-p21Ras-scFv was obtained from 1 L of bacterial medium. The purity of the recombinant antibody was above 85%, we found that the prepared on a pilot scale RGD-p21Ras-scFv could penetrate the cell membrane of colon cancer cells and bind to p21Ras, then led to reduce of p21Ras-GTP (active p21Ras). The phosphorylation of downstream effectors MEK-ERK /PI3K-AKT was downregulated. In vivo antitumor activity assays showed that the RGD-p21Ras-scFv inhibited the proliferation of colorectal cancer cell lines. CONCLUSION: RGD-p21Ras-scFv prokaryotic expressed on pilot-scale could inhibited Ras-driven colorectal cancer growth by partially blocking p21Ras-GTP and might be able to be a hidden therapeutic antibody for treating RAS-driven tumors.


Assuntos
Neoplasias Colorretais , Escherichia coli , Camundongos , Animais , Humanos , Escherichia coli/genética , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Guanosina Trifosfato , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas p21(ras)/genética
20.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395209

RESUMO

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sefarose , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa