Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070030

RESUMO

The neuraminidase enzyme (NA) from the influenza virus is responsible for the proliferation and infections of the virus progeny, prompting several efforts to discover and optimize effective neuraminidase inhibitors. The main aim of this study is to discover a new potential neuraminidase inhibitor that comes from Garcinia celebica leaves (GCL). The bioassay-guided isolation method was performed to obtain lead compounds. The binding interaction of the isolated compounds was predicted by using molecular docking studies. Friedeline (GC1, logP > 5.0), two lanastone derivatives (methyl-3α,23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat (GC2) and 24E-3a,9,23-trihydroxy-17,14-friedolanostan-14,24-dien-26-oate (GC3) with LogP > 5.0) and catechin (GC4, LogP = 1.4) were identified. The inhibitory potency of these four compounds on NA from C. perfringens and H1N1 was found to be as follows: GC4 > GC2 > GC3 > GC1. All compounds exhibited higher inhibitory activity towards C. perfringens NA compared to H1N1 NA. From the molecular docking results, GC4 favorably docked and interacted with Arg118, Arg371, Arg292, Glu276 and Trp178 residues, whilst GC2 interacted with Arg118, Arg371, Arg292, Ile222, Arg224 and Ser246. GC3 interacted with Tyr406 only. GC4 had potent NA inhibition with free energy of binding of -12 kcal/mol. In the enzyme inhibition study, GC4 showed the highest activity with an IC50 of 60.3 µM and 91.0 µM for C. perfringens NA and H1N1 NA-respectively.


Assuntos
Antivirais/química , Antivirais/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Garcinia/química , Neuraminidase/antagonistas & inibidores , Folhas de Planta/química , Simulação de Acoplamento Molecular , Estrutura Molecular
2.
Heliyon ; 10(9): e30629, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742069

RESUMO

Garcinia celebica L. syn. Garcinia hombroniana Pierre belongs to the family Clusiaceae, is indigenous to Southeast Asian countries. This review aims to provide updated, comprehensive and categorized information on the phytoconstituents and pharmacological effects of this species. The data collection mainly involved searches through databases named Scopus, Google Scholar, Pubmed and Springer Link. Approximately 100 phytochemicals were recorded in this review, with various classes of compounds such as triterpenoids, flavonoids, benzophenones, xanthones, depsidones and sterols identified. The most abundant compounds isolated belong to two chemical classes: triterpenoids and xanthones. Their extracts and pure compounds have been reported for their antibacterial, antiparasitic, hepatoprotective, antioxidant, antidiabetic, antituberculosis, antiplatelet aggregation, anti-neuraminidase and cholinesterase inhibitory activities. This review will provide a comprehensive understanding between the phytochemical components and its medicinal uses that may serve as a valuable resource for future drug development.

3.
Biomedicines ; 9(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829884

RESUMO

This study aimed to isolate polyprenylated benzophenones from the rootbark of Garcinia celebica and assess their activities in vitro and in silico. The antioxidant activity was evaluated by the DPPH, ABTS, and FRAP methods. The cytotoxicity was evaluated against HeLa, MCF-7, A549, and B16 cancer cell lines. The antiplasmodial activity was performed against the chloroquine-sensitive Plasmodium falciparum strain 3D7. Molecular docking was analyzed on alpha-estrogen receptor (3ERT) and P. falciparum lactate dehydrogenase enzyme (1CET). The prediction of ADMET for the compounds was also studied. For the first time, (-)-cycloxanthochymol, isoxanthochymol, and xanthochymol were isolated from the root bark of Garcinia celebica. The antioxidant and cytotoxicity evaluation showed that all benzophenones exhibited antioxidant activity compared to gallic acid and quercetin as positive controls and also exhibited strong activity against HeLa, MCF-7, A549, and B16 cell lines compared to cisplatin as the positive control. The antiplasmodial evaluation showed that isoxanthochymol exhibited activity against the chloroquine-sensitive P. falciparum strain 3D7. In addition, the in silico molecular docking study supported in vitro activities. The ADMET analysis also indicated the isolated benzophenones are potential oral drug candidates.

4.
Nat Prod Res ; 34(23): 3404-3408, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30773054

RESUMO

Garcinia celebica L., locally known as "manggis hutan" in Malaysia is widely used in folkloric medicine to treat various diseases. The present study was aimed to examine the chemical composition of the essential oil from the leaves of G. celebica L. (EO-GC) and its cytotoxic and antimicrobial potential. EO-GC obtained by hydrodistillation was analysed using capillary GC and GC-MS. Twenty-two compounds were identified, dominated by α-copaene (61.25%), germacrene D (6.72%) and ß-caryophyllene (5.85%). In the in vitro MTT assay, EO-GC exhibited significant anti-proliferative effects towards MCF-7 human breast cancer cells with IC50 value of 45.2 µg/mL. Regarding the antimicrobial activity, it showed better inhibitory effects on Gram-positive bacteria than Gram-negative bacteria and none on the fungi and yeasts tested.


Assuntos
Anti-Infecciosos/farmacologia , Garcinia/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Anti-Infecciosos/química , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células MCF-7 , Malásia , Testes de Sensibilidade Microbiana , Óleos Voláteis/análise , Folhas de Planta/química , Sesquiterpenos/análise , Sesquiterpenos/farmacologia , Sesquiterpenos de Germacrano/análise
5.
Pharmacogn Mag ; 13(Suppl 2): S301-S305, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28808396

RESUMO

BACKGROUND: Resistance of antimalarial drugs to Plasmodium falciparum has become a major concern in malaria eradication. Although it is also affected by several socioeconomic factors, a new antiplasmodial agent is needed for a global malaria control program. OBJECTIVE: In this study, we attempted to uncover the antiplasmodial properties of Garcinia celebica, an Indonesian medicinal plant, along with the responsible compound and its possible mechanism. MATERIALS AND METHODS: The G. celebica leaves were ethanol extracted and fractionated based on their polarity using n-hexane, ethyl acetate, and water. The antiplasmodial activity was tested in vitro against chloroquine-resistant P. falciparum at 100 µg/ml for 72 h. The active compound of the most active ethyl acetate fraction was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. RESULTS: The IC50 of (+)-catechin, the characterized compound, against P. falciparum was 198 µM in 24 h and experiment. The isolated catechin inhibited P. falciparum growth in both trophozoite and schizont stages. An additional experiment also suggests that the antiplasmodial property of catechin occurs through the induction of the oxidative stress to P. falciparum. CONCLUSION: This result shows that the potential of catechin and its antimalarial properties should be explored further. SUMMARY: Garcinia celebica leaf extract and fractions inhibit Plasmodium falciparum growthCatechin, the active compound of Garcinia celebica leaf extract, inhibits Plasmodium falciparum growth in a time- and dose-dependent manner Abbreviations used: RBC: Red Blood Cells; IC50: Inhibition Concentrattino 50; MeOH: Methanol; RPMI: Roswell Park Memorial Institute; EI: Electron Ionization.

6.
Biomed Rep ; 4(1): 79-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870339

RESUMO

The leaves of Garcinia celebica strongly inhibit the proliferation of MCF-7 human breast adenocarcinoma cell lines. The present study focused on investigating the active anticancer and antiproliferative compound from the G. celebica leaves and assessing its mechanism of action. Ethanol extracts of G. celebica were fractionated based on their polarity using n-hexane, ethyl acetate and water. The antiproliferative properties were tested in vitro against MCF-7 human breast cancer cell lines using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The active compound was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. The characterized compound was also tested for its antiproliferative properties and the mechanism by which it induces apoptosis in MCF-7 cells by western blot analysis of the activated apoptotic proteins. This resulted in the isolation of a friedolanostane triterpenoid, which was determined to be methyl-3α, 23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat. This compound inhibited MCF-7 cell proliferation in a time- and dose-dependent manner with IC50 values of 82 and 70 µM for the 24 and 48 h treatments, respectively. Furthermore, the western blot analysis suggested that the compound exerted its anticancer activities by promoting apoptosis through the inhibition of the oncogenic protein Akt, thereby increasing the expression of poly (ADP-ribose) polymerase (PARP) protein. These results suggest that methyl-3α,23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat is the anticancer compound found in G. celebica, providing a basis for its potential use in cancer disease management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa