Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(40): e2408277121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331411

RESUMO

Palladium (Pd) catalysts have been extensively studied for the direct synthesis of H2O through the hydrogen oxidation reaction at ambient conditions. This heterogeneous catalytic reaction not only holds considerable practical significance but also serves as a classical model for investigating fundamental mechanisms, including adsorption and reactions between adsorbates. Nonetheless, the governing mechanisms and kinetics of its intermediate reaction stages under varying gas conditions remain elusive. This is attributed to the intricate interplay between adsorption, atomic diffusion, and concurrent phase transformation of catalyst. Herein, the Pd-catalyzed, water-forming hydrogen oxidation is studied in situ, to investigate intermediate reaction stages via gas cell transmission electron microscopy. The dynamic behaviors of water generation, associated with reversible palladium hydride formation, are captured in real time with a nanoscale spatial resolution. Our findings suggest that the hydrogen oxidation rate catalyzed by Pd is significantly affected by the sequence in which gases are introduced. Through direct evidence of electron diffraction and density functional theory calculation, we demonstrate that the hydrogen oxidation rate is limited by precursors' adsorption. These nanoscale insights help identify the optimal reaction conditions for Pd-catalyzed hydrogen oxidation, which has substantial implications for water production technologies. The developed understanding also advocates a broader exploration of analogous mechanisms in other metal-catalyzed reactions.

2.
Angew Chem Int Ed Engl ; 63(3): e202311241, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815860

RESUMO

Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.

3.
Chemistry ; 29(9): e202203259, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36404276

RESUMO

Understanding molecular-scale reaction mechanisms is crucial for the design of modern catalysts with industrial prospect. Through joint experimental and computational studies, we investigate the direct coupling reaction of CH4 and CO2 , two abundant greenhouse gases, mediated by Ta1,4 + ions to form larger oxygenated hydrocarbons. Coherent with proposed elementary steps, we expose products of CH4 dehydrogenation [Ta1,4 CH2 ]+ to CO2 in a ring electrode ion trap. Product analysis and reaction kinetics indicate a predisposition of the tetramers for C-O coupling with a conversion to products of CH2 O, whereas atomic cations enable C-C coupling yielding CH2 CO. Selected experimental findings are supported by thermodynamic computations, connecting structure, electronic properties, and catalyst function. Moreover, the study of bare Ta1,4 + compounds indicates that methane dehydrogenation is a significant initial step in the direct coupling reaction, enabling new, yet unknown reaction pathways.

4.
Proc Natl Acad Sci U S A ; 116(43): 21416-21420, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591230

RESUMO

An unprecedented, spontaneous, and complete cleavage of the triple bond of N2 in the thermal reaction of 15N2 with Ta214N+ was observed experimentally by Fourier transform ion cyclotron resonance mass spectrometry; mechanistic aspects of the degenerate ligand exchange were addressed by high-level quantum chemical calculations. The "hidden" dis- and reassembly of N2, mediated by Ta2N+, constitutes a full catalytic cycle. A frontier orbital analysis reveals that the scission of the N2 triple bond is essentially governed by the donation of d-electrons from the 2 metal centers into antibonding π*-orbitals of N2 and by the concurrent migration of electrons from bonding π- and σ-orbitals of N2 into empty d-orbitals of the metals. This work may contribute to a rational design of catalysts in order to reduce the still enormous energy demand required for an artificial dinitrogen activation.

5.
Proc Natl Acad Sci U S A ; 115(46): 11680-11687, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30352846

RESUMO

In a full catalytic cycle, bare Ta2+ in the highly diluted gas phase is able to mediate the formation of ammonia in a Haber-Bosch-like process starting from N2 and H2 at ambient temperature. This finding is the result of extensive quantum chemical calculations supported by experiments using Fourier transform ion cyclotron resonance MS. The planar Ta2N2+, consisting of a four-membered ring of alternating Ta and N atoms, proved to be a key intermediate. It is formed in a highly exothermic process either by the reaction of Ta2+ with N2 from the educt side or with two molecules of NH3 from the product side. In the thermal reaction of Ta2+ with N2, the N≡N triple bond of dinitrogen is entirely broken. A detailed analysis of the frontier orbitals involved in the rate-determining step shows that this unexpected reaction is accomplished by the interplay of vacant and doubly occupied d-orbitals, which serve as both electron acceptors and electron donors during the cleavage of the triple bond of N≡N by the ditantalum center. The ability of Ta2+ to serve as a multipurpose tool is further shown by splitting the single bond of H2 in a less exothermic reaction as well. The insight into the microscopic mechanisms obtained may provide guidance for the rational design of polymetallic catalysts to bring about ammonia formation by the activation of molecular nitrogen and hydrogen at ambient conditions.

6.
Sci Technol Adv Mater ; 21(1): 303-322, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33628119

RESUMO

The large and vivid field of intermetallic compounds in catalysis is reviewed to identify necessities, strategies and new developments making use of the advantageous catalytic properties of intermetallic compounds. Since recent reviews summarizing contributions in heterogeneous catalysis as well as electrocatalysis are available, this contribution is not aiming at a comprehensive literature review. To introduce the field, first the interesting nature of intermetallic compounds is elaborated - including possibilities as well as requirements to address catalytic questions. Subsequently, this review focuses on exciting developments and example success stories of intermetallic compounds in catalysis. Since many of these are based on recent advances in synthesis, a short overview of synthesis and characterisation is included. Thus, this contribution aims to be an introduction to the newcomer as well as being helpful to the experienced researcher by summarising the different approaches. Selected examples from literature are chosen to illustrate the versatility of intermetallic compounds in heterogeneous catalysis where the emphasis is on developments since the last comprehensive review in the field.

7.
Small Methods ; 7(6): e2201302, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36871146

RESUMO

Conventional adsorbents and catalysts shaped by granulation or extrusion have high pressure drop and poor flexibility for chemical, energy, and environmental processes. Direct ink writing (DIW), a kind of 3D printing, has evolved into a crucial technique for manufacturing scalable configurations of adsorbents and catalysts with satisfactory programmable automation, highly optional materials, and reliable construction. Particularly, DIW can generate specific morphologies required for excellent mass transfer kinetics, which is essential in gas-phase adsorption and catalysis. Here, DIW methodologies for mass transfer enhancement in gas-phase adsorption and catalysis, covering the raw materials, fabrication process, auxiliary optimization methods, and practical applications are comprehensively summarized. The prospects and challenges of DIW methodology in realizing good mass transfer kinetics are discussed. Ideal components with a gradient porosity, multi-material structure, and hierarchical morphology are proposed for future investigations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa