Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Environ Sci Technol ; 58(12): 5567-5577, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488517

RESUMO

The development of efficient defluorination technology is an important issue because the kind of emerging pollutant of hexafluoropropylene oxide dimer acid (GenX) as an alternative to perfluorooctanoic acid (PFOA) has the higher environmental risks. In the UV/bisulfite system, we first developed a hydrophobic confined α-Fe2O3 nanoparticle layer rich in oxygen vacancies, which accelerated the enrichment of HSO3- and GenX on the surface and pores through electrostatic attraction and hydrophobic interaction, retaining more hydrated electrons (eaq-) and rapidly destroying GenX under UV excitation. Especially, under anaerobic and aerobic conditions, the degradation percentage of GenX obtain nearly 100%, defluorination of GenX to 88 and 57% respectively. It was amazed to find that the three parallel H/F exchange pathways triggered by the rapid reactions of eaq- and GenX, which were unique to anaerobic conditions, improved the efficiency of fluoride removal and weaken the interference of dissolved oxygen and H+. Therefore, this study provided an available material and mechanism for sustainable fluoride removal from wastewater in aerobic and anaerobic conditions.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Elétrons , Fluoretos , Caprilatos/química
2.
Environ Res ; 258: 119483, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914254

RESUMO

Due to the persistent nature and significant negative impacts of perfluorooctanoic acid (PFOA) on human health and other organisms, the emergence of new PFOA alternatives, such as perfluoro (2-methyl-3-oxhexanoic) acid (GenX) and perfluoro-3,6,9-trioxyundecanoic acid (PFO3TDA), have drawn significant attention. However, the toxic effects of PFOA and its substitutes on bones remain limited. In this study, we administered different concentrations of PFOA, GenX, and PFO3TDA via gavage to 3-week-old male BALB/C mice for four weeks. X-ray and micro-CT scans revealed shortening of the femur and tibia and significant reduction in bone density. Additionally, PFOA, GenX, and PFO3TDA promoted osteoblast senescence and impaired osteogenic capabilities. This was characterized by a decrease in the expression of osteogenesis-related genes (OCN, ALP, Runx2, etc.) and an increase in the expression of aging and inflammation-related factors (p16INK4a, P21, MMP3, etc). Furthermore, RNA sequencing revealed activation of the ferroptosis pathway in PFOA-treated osteoblasts, characterized by notable lipid peroxidation and excessive iron accumulation. Finally, by inhibiting the ferroptosis pathway with ferrostatin-1 (Fer-1), we effectively alleviated the senescence of MC3T3-E1 cells treated with PFOA, GenX, and PFO3TDA, and improved their osteogenic capabilities. Therefore, our study provides a new therapeutic insight into the impact of PFOA and its substitutes on bone growth and development.

3.
Arch Toxicol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782768

RESUMO

Per- and polyfluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) and perfluoro-2-methyl-3-oxahexanoic acid (GenX), the new replacement PFAS, are major environmental contaminants. In rodents, these PFAS induce several adverse effects on the liver, including increased proliferation, hepatomegaly, steatosis, hypercholesterolemia, nonalcoholic fatty liver disease and liver cancers. Activation of peroxisome proliferator receptor alpha by PFAS is considered the primary mechanism of action in rodent hepatocyte-induced proliferation. However, the human relevance of this mechanism is uncertain. We investigated human-relevant mechanisms of PFAS-induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Male FRG humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed that all three PFAS induced activation of p53 and inhibition of androgen receptor and NR1D1, a transcriptional repressor important in circadian rhythm. Further biochemical studies confirmed NR1D1 inhibition and in silico modeling indicated potential interaction of all three PFAS with the DNA-binding domain of NR1D1. In conclusion, our studies using FRG humanized mice have revealed new human-relevant molecular mechanisms of PFAS including their previously unknown effect on circadian rhythm.

4.
J Water Health ; 22(3): 550-564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557570

RESUMO

Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Águas Residuárias , Nitratos/análise , North Carolina , Escherichia coli , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água , Água Subterrânea/microbiologia , Compostos Orgânicos
5.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473932

RESUMO

Per- and poly-fluoroalkyl substances (PFAS), such as GenX, are a class of highly stable synthetic compounds that have recently become the focus of environmental remediation endeavors due to their toxicity. While considerable strides have been made in PFAS remediation, the diversity of these compounds, and the costs associated with approaches such as ion exchange resins and advanced oxidation technologies, remain challenging for widespread application. In addition, little is known about the potential binding and impacts of GenX on human proteins. To address these issues, we applied phage display and screened short peptides that bind specifically to GenX, with the ultimate goal of identifying human proteins that bind with GenX. In this study we identified the amino acids that contribute to the binding and measured the binding affinities of the two discovered peptides with NMR. A human protein, ankyrin-repeat-domain-containing protein 36B, with matching sequences of one of the peptides, was identified, and the binding positions were predicted by docking and molecular dynamics simulation. This study created a platform to screen peptides that bind with toxic chemical compounds, which ultimately helped us identify biologically relevant molecules that could be inhibited by the GenX, and also provided information that will contribute to future bioengineered GenX-binding device design.


Assuntos
Bacteriófagos , Fluorocarbonos , Humanos , Peptídeos/química , Fluorocarbonos/metabolismo , Bacteriófagos/metabolismo
6.
Toxicol Pathol ; 51(1-2): 4-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36987989

RESUMO

Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate (HFPO-DA) is a short chain member of per- and polyfluoroalkyl substances (PFAS). To better understand the relevance of histopathological effects seen in livers of mice exposed to HFPO-DA for human health risk assessment, histopathological effects were summarized from hematoxylin and eosin (H&E)-stained sections in several repeat-dose toxicity studies in mice. Findings across studies revealed histopathological changes consistent with peroxisomal proliferation, whereas two reports of steatosis could not be confirmed in the published figures. In addition, mechanisms of hepatocellular death were assessed in H&E sections as well as with the apoptotic marker cleaved caspase-3 (CCasp3) in newly cut sections from archived liver blocks from select studies. A comparison of serially CCasp3 immunolabeled and H&E-stained sections revealed that mechanisms of hepatocellular death cannot be clearly discerned in H&E-stained liver sections alone as several examples of putatively necrotic cells were positive for CCasp3. Published whole genome transcriptomic data were also reevaluated for enrichment of various forms of hepatocellular death in response to HFPO-DA, which revealed enrichment of apoptosis and autophagy, but not ferroptosis, pyroptosis, or necroptosis. These morphological and molecular findings are consistent with transcriptomic evidence for peroxisome proliferator-activated receptor alpha (PPARα) signaling in HFPO-DA exposed mice.


Assuntos
Carcinoma Hepatocelular , Fluorocarbonos , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Fluorocarbonos/toxicidade
7.
Environ Sci Technol ; 57(47): 18970-18980, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37223990

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are widely used anthropogenic chemicals. Because of the strength of the carbon-fluorine bond, PFAS are not destroyed in typical water treatment processes. Sulfate (SO4•-) and hydroxyl (•OH) radicals can oxidize some PFAS, but the behavior of per- and polyfluoroalkyl ether acids (PFEAs) in processes involving SO4•- and •OH is poorly understood. In this study, we determined second-order rate constants (k) describing the oxidation of 18 PFAS, including 15 novel PFEAs, by SO4•- and •OH. Among the studied PFAS, 6:2 fluorotelomer sulfonate reacted most readily with •OH [k•OH = (1.1-1.2) × 107 M-1 s-1], while polyfluoroalkyl ether acids containing an -O-CFH- moiety reacted more slowly [k•OH = (0.5-1.0) × 106 M-1 s-1]. In the presence of SO4•-, polyfluoroalkyl ether acids with an -O-CFH- moiety reacted more rapidly [kSO4•- = (0.89-4.6) × 106 M-1 s-1] than perfluoroalkyl ether carboxylic acids (PFECAs) and a chloro-perfluoro-polyether carboxylic acid (ClPFPECA) [kSO4•- = (0.85-9.5) × 104 M-1 s-1]. For homologous series of perfluoroalkyl carboxylic acids, linear and branched monoether PFECAs, and multiether PFECAs, PFAS chain length had little impact on second-order rate constants. SO4•- reacted with the carboxylic acid headgroup of perfluoroalkyl carboxylic acids and PFECAs. In contrast, for polyfluoroalkyl ether carboxylic and sulfonic acids with an -O-CFH- moiety, the site of SO4•- attack was the -O-CFH- moiety. Perfluoroalkyl ether sulfonic acids were not oxidized by SO4•- and •OH under the conditions evaluated in this study.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Éter , Radical Hidroxila , Sulfatos , Fluorocarbonos/análise , Éteres , Ácidos Sulfônicos , Ácidos Carboxílicos , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 57(11): 4443-4453, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36848373

RESUMO

The present study assessed the bioaccumulation potential of per- and polyfluoroalkyl substances (PFAS) in ferns and linked root uptake behaviors to root characteristics and PFAS molecular structure. Tissue and subcellular-level behavioral differences between alternative and legacy PFAS were compared via an electron probe microanalyzer with energy dispersive spectroscopy (EPMA-EDS) and differential centrifugation. Our results show that ferns can accumulate PFAS from water, immobilize them in roots, and store them in harvestable tissue. The PFAS loading in roots was dominated by PFOS; however, a substantial amount of associated PFOS could be rinsed off by methanol. Correlation analyses indicated that root length, surface and project area, surface area per unit length of the root system, and molecular size and hydrophobicity of PFAS were the most significant factors affecting the magnitude of root uptake and upward translocation. EPMA-EDS images together with exposure experiments suggested that long-chain hydrophobic compounds tend to be adsorbed and retained on the root epidermis, while short-chain compounds are absorbed and quickly translocated upward. Our findings demonstrated the feasibility of using ferns in phytostabilization and phytoextraction initiatives of PFAS in the future.


Assuntos
Ácidos Alcanossulfônicos , Gleiquênias , Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Estrutura Molecular , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Raízes de Plantas/química , Ácidos Alcanossulfônicos/análise
9.
Environ Sci Technol ; 57(26): 9567-9579, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37340551

RESUMO

Central North Carolina (NC) is highly contaminated with per- and polyfluoroalkyl substances (PFAS), in part due to local fluorochemical production. Little is known about the exposure profiles and long-term health impacts for humans and animals that live in nearby communities. In this study, serum PFAS concentrations were determined using liquid chromatography high-resolution mass spectrometry and diagnostic clinical chemistry endpoints were assessed for 31 dogs and 32 horses that reside in Gray's Creek NC at households with documented PFAS contamination in their drinking water. PFAS were detected in every sample, with 12 of the 20 PFAS detected in ≥50% of samples from each species. The average total PFAS concentrations in horses were lower compared to dogs who had higher concentrations of PFOS (dogs 2.9 ng/mL; horses 1.8 ng/mL), PFHxS (dogs 1.43 ng/mL, horses < LOD), and PFOA (dogs 0.37 ng/mL; horses 0.10 ng/mL). Regression analysis highlighted alkaline phosphatase, glucose, and globulin proteins in dogs and gamma glutamyl transferase in horses as potential biomarkers associated with PFAS exposure. Overall, the results of this study support the utility of companion animal and livestock species as sentinels of PFAS exposure differences inside and outside of the home. As in humans, renal and hepatic health in domestic animals may be sensitive to long-term PFAS exposures.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Cães , Cavalos , Animais , North Carolina , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Água Potável/química , Biomarcadores , Ácidos Alcanossulfônicos/análise , Poluentes Ambientais/análise
10.
Ecotoxicol Environ Saf ; 259: 115020, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201426

RESUMO

Perfluorooctanoic acid (PFOA), a typical perfluoroalkyl group compound, has received worldwide attention due to its significant environmental toxicity. Following regulatory bans on the production and emission of PFOA, concerns have been raised about the potential health risks and the safety of novel perfluoroalkyl analogues. HFPO-DA (trade name Gen-X) and HFPO-TA are two perfluoroalkyl analogues known to be bioaccumulative, whose level of toxicity and whether they are safe alternatives to PFOA remain unclear. In the following study, the physiological and metabolic effects of exposure to PFOA and its novel analogues were explored in zebrafish using 1/3 LC50 (PFOA 100 µM, Gen-X 200 µM, HFPO-TA 30 µM). At the same LC50 toxicological effect, exposure to PFOA and HFPO-TA resulted in abnormal phenotypes such as spinal curvature, pericardial edema and aberrant body length, while Gen-X was little changed. Metabolically, PFOA, HFPO-TA and Gen-X all significantly increased total cholesterol in exposed zebrafish with PFOA and HFPO-TA also increasing total triglyceride levels. Transcriptome analysis showed that the number of differentially expressed genes in PFOA, Gen-X, and HFPO-TA treated conditions compared to control groups were 527, 572, and 3, 933, respectively. KEGG and GO analysis of differentially expressed genes revealed pathways and functions related to lipid metabolism as well as significant activation of the peroxisome proliferators-activated receptor (PPARs) pathway. Furthermore, RT-qPCR analysis identified significant dysregulation in the downstream target genes of PPARα, which is responsible for lipid oxidative catabolism, and the SREBP pathway, which is responsible for lipid synthesis. In conclusion, both perfluoroalkyl analogues HFPO-TA and Gen-X exhibit significant physiological and metabolic toxicity to aquatic organisms and their environmental accumulation should be closely regulated.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Metabolismo dos Lipídeos , Fluorocarbonos/toxicidade , Caprilatos/toxicidade
11.
Ecotoxicol Environ Saf ; 259: 115001, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196520

RESUMO

Per- and polyfluoroalkyl substances (PFASs) and perfluoroalkyl ether carboxylic acids (PFECAs) are organic chemicals that are widely used in the manufacture of a wide range of human-made products. Many monitoring findings revealed the presence of PFASs and PFECAs in numerous environmental sources, including water, soil, and air, which drew more attention to both chemicals. Because of their unknown toxicity, the discovery of PFASs and PFECAs in a variety of environmental sources was viewed as a cause for concern. In the present study, male mice were given orally one of the typical PFASs, perfluorooctanoic acid (PFOA), and one of the representative PFECAs, hexafluoropropylene oxide-dimer acid (HFPO-DA). The liver index showing hepatomegaly rose significantly after 90 d of exposure to PFOA and HFPO-DA, respectively. While sharing similar suppressor genes, both chemicals demonstrated unique hepatotoxic mechanisms. In different ways, these two substances altered the expression of hepatic stress-sensing genes as well as the regulation of nuclear receptors. Not only are bile acid metabolism-related genes in the liver altered, but cholesterol metabolism-related genes as well. These results indicate that PFOA and HFPO-DA both cause hepatotoxicity and bile acid metabolism impairment with distinct mechanisms.


Assuntos
Fluorocarbonos , Humanos , Camundongos , Masculino , Animais , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Fígado/metabolismo , Ácidos e Sais Biliares
12.
Toxicol Appl Pharmacol ; 449: 116136, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752307

RESUMO

Data demonstrate numerous per- and polyfluoroalkyl substances (PFAS) activate peroxisome proliferator-activated receptor alpha (PPARα), however, additional work is needed to characterize PFAS activity on PPAR gamma (PPARγ) and other nuclear receptors. We utilized in vitro assays with either human or rat PPARα or PPARγ ligand binding domains to evaluate 16 PFAS (HFPO-DA, HFPO-DA-AS, NBP2, PFMOAA, PFHxA, PFOA, PFNA, PFDA, PFOS, PFBS, PFHxS, PFOSA, EtPFOSA, and 4:2, 6:2 and 8:2 FTOH), 3 endogenous fatty acids (oleic, linoleic, and octanoic), and 3 pharmaceuticals (WY14643, clofibrate, and the metabolite clofibric acid). We also tested chemicals for human estrogen receptor (hER) transcriptional activation. Nearly all compounds activated both PPARα and PPARγ in both human and rat ligand binding domain assays, except for the FTOH compounds and PFOSA. Receptor activation and relative potencies were evaluated based on effect concentration 20% (EC20), top percent of max fold induction (pmaxtop), and area under the curve (AUC). HFPO-DA and HFPO-DA-AS were the most potent (lowest EC20, highest pmaxtop and AUC) of all PFAS in rat and human PPARα assays, being slightly less potent than oleic and linoleic acid, while NBP2 was the most potent in rat and human PPARγ assays. Only PFHxS, 8:2 and 6:2 FTOH exhibited hER agonism >20% pmax. In vitro measures of human and rat PPARα and PPARγ activity did not correlate with oral doses or serum concentrations of PFAS that induced increases in male rat liver weight from the National Toxicology Program 28-d toxicity studies. Data indicate that both PPARα and PPARγ activation may be molecular initiating events that contribute to the in vivo effects observed for many PFAS.


Assuntos
Fluorocarbonos , PPAR alfa , Animais , Ácidos Graxos , Feminino , Fluorocarbonos/toxicidade , Ligantes , Masculino , PPAR alfa/genética , PPAR gama , Ratos , Receptores de Estrogênio
13.
Environ Sci Technol ; 56(10): 6103-6112, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734715

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are widely used anthropogenic chemicals. For environmental and toxicological analysis, it is important to understand the stability of PFASs, including novel per- and polyfluoroalkyl ether acids (PFEAs), in commonly used solvents. In this study, we investigated the effects of PFAS characteristics, solvent type, water-to-organic solvent ratio, and temperature on the stability of 21 PFASs including 18 PFEAs. None of the studied PFASs showed measurable degradation in deionized water, methanol, or isopropyl alcohol over 30 days; however, nine PFEAs degraded in the polar aprotic solvents acetonitrile, acetone, and dimethyl sulfoxide (DMSO). PFEA degradation followed first-order kinetics, and first-order rate constants increased with increasing temperature and with decreasing water-to-organic solvent ratio. Monoethers with a carboxylic acid functional group adjacent to a tertiary carbon (>CF-COOH) degraded more rapidly than multiethers in which the carboxylic acid moiety was adjacent to repeating -CF2O- groups. In contrast, monoethers with a carboxylic acid moiety adjacent to a secondary carbon (-CF2-COOH) were stable in all tested solvents. Using high-resolution mass spectrometry, we determined that PFEAs with a >CF-COOH group were stoichiometrically decarboxylated in aprotic solvents and formed products with a >CFH group; e.g., hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX), HFPO-trimer acid, and HFPO-tetramer acid were stoichiometrically converted to Fluoroethers E-1, E-2, and E-3, respectively. PFEA degradation results highlight the importance of solvent choice when preparing dosing solutions and performing extractions for environmental and toxicological assessments of PFEAs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Carbono , Ácidos Carboxílicos , Éter , Éteres , Fluorocarbonos/análise , Solventes , Água , Poluentes Químicos da Água/análise
14.
Environ Res ; 212(Pt D): 113582, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661729

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of pollutants of concern due to their ubiquitous presence, persistence, and toxicity in aquatic environments. Legacy PFAS pollutants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been more widely studied in aquatic environments. However, replacement PFAS, such as ammonium perfluoro (2-methyl-3-oxahexanoate; GenX) are increasingly being detected with little known information surrounding their toxicity. Here, Daphnia magna, a model organism for freshwater ecotoxicology was used to compare the acute sub-lethal toxicity of PFOS, PFOA, GenX, and PFAS mixtures. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the targeted polar metabolic profile extracted from single Daphnia was quantified to investigate perturbations in the exposure groups versus the unexposed organisms. Multivariate statistical analyses demonstrated significant non-monotonic separation in PFOA, GenX, and PFAS mixture exposures. Sub-lethal exposure to concentrations of PFOS did not lead to significant separation in multivariate analyses. Univariate statistics and pathway analyses were used to elucidate the mode of action of PFAS exposure. Exposure to all individual PFAS led to significant perturbations in many amino acids including cysteine, histidine, tryptophan, glycine, and serine. These perturbations are consistent with biochemical pathway disruptions in the pantothenate and Coenzyme A (CoA) biosynthesis, thiamine metabolism, histidine metabolism, and aminoacyl-tRNA biosynthesis pathways. Overall, the collected metabolomic data is consistent with disruptions in energy metabolism and protein synthesis as the primary mode of action of sub-lethal PFAS exposure. Secondary modes of action among individual pollutant exposures demonstrated that the structural properties (carboxylic acid vs. sulfonic acid group) may play a role in the metabolic perturbations observed. Sub-lethal exposure to PFAS mixtures highlighted a mixed response when compared to the individual pollutants (PFOS, PFOA, and GenX). Overall, this study emphasizes the niche capability of environmental metabolomics to differentiate secondary modes of action from metabolic perturbations in both single pollutant and pollutant mixtures within the same chemical class.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , Animais , Cromatografia Líquida , Daphnia , Poluentes Ambientais/análise , Fluorocarbonos/análise , Histidina , Espectrometria de Massas em Tandem
15.
Ecotoxicol Environ Saf ; 244: 114047, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075119

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are chemicals resistant to degradation. While such a feature is desirable in consumer and industrial products, some PFAS, including perfluorooctanoic acid (PFOA), are toxic and bioaccumulate. Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging PFAS developed to replace PFOA, has not been extensively studied. To evaluate the potential toxicity of HFPO-DA with a cost- and time-efficient approach, we exposed C. elegans larvae for 48 h to 4 × 10-9-4 g/L HFPO-DA in liquid media and measured developmental, behavioral, locomotor, and transcriptional effects at various exposure levels. Worms exposed to 1.5-4 g/L HFPO-DA were developmentally delayed, and progeny production was significantly delayed (p < 0.05) in worms exposed to 2-4 g/L HFPO-DA. Statistically significant differential gene expression was identified in all fourteen HFPO-DA exposure groups ranging from 1.25 × 10-5 to 4 g/L, except for 6.25 × 10-5 g/L. Among 10298 analyzed genes, 2624 differentially expressed genes (DEGs) were identified in the developmentally delayed 4 g/L group only, and 78 genes were differentially expressed in at least one of the thirteen groups testing 1.25 × 10-5-2 g/L HFPO-DA exposures. Genes encoding for detoxification enzymes including cytochrome P450 and UDP glucuronosyltransferases were upregulated in 0.25-4 g/L acute exposure groups. DEGs were also identified in lower exposure level groups, though they did not share biological functions except for six ribosomal protein-coding genes. While our transcriptional data is inconclusive to infer mechanisms of toxicity, the significant gene expression differences at 1.25 × 10-5 g/L, the lowest concentration tested for transcriptional changes, calls for further targeted analyses of low-dose HFPO-DA exposure effects.


Assuntos
Fluorocarbonos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caprilatos , Fluorocarbonos/metabolismo , Fluorocarbonos/toxicidade , Óxidos , Polímeros , Proteínas Ribossômicas/metabolismo , Transcriptoma , Difosfato de Uridina
16.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431997

RESUMO

The availability of sensitive analytical methods to detect per- and polyfluoroalkyl substances (PFASs) in food of animal origin is fundamental for monitoring programs to collect data useful for improving risk assessment strategies. The present study aimed to develop and validate a fast and sensitive method for determining short and long-chain PFASs in meat (bovine, fish, and swine muscle), bovine liver, hen eggs, and cow's milk to be easily applicable in routine analysis of food. A QuEChERS extraction and clean-up method in combination with liquid chromatography coupled to mass spectrometry (LC-MSMS) were used. The method resulted in good linearity (Pearson's R > 0.99), low limits of detection (7.78−16.35 ng/kg, 8.26−34.01 ng/kg, 6.70−33.65 ng/kg, and 5.92−19.07 ng/kg for milk, liver, egg, and muscle, respectively), and appropriate limits of quantification (50 ng/kg for all compounds except for GenX and C6O4, where the limits of quantification were 100 ng/kg). Trueness and precision for all the tested levels met the acceptability criteria of 80−120% and ≤20%, respectively, regardless of the analyzed matrix. As to measurement uncertainty, it was <50% for all compound/matrix combinations. These results demonstrate the selectivity and sensitivity of the method for simultaneous trace detection and quantification of 14 PFASs in foods of animal origin, verified through the analysis of 63 food samples.


Assuntos
Fluorocarbonos , Animais , Bovinos , Feminino , Suínos , Fluorocarbonos/análise , Espectrometria de Massas em Tandem/métodos , Galinhas , Cromatografia Líquida , Carne/análise
17.
Toxicol Appl Pharmacol ; 422: 115531, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933458

RESUMO

Perfluoropolyethers, also known as ether-PFAS, are linear or branched alkyl ether polymers, where the substituent hydrogens on the carbon atoms in the chain have been fully replaced by fluorine atoms. Some of these molecules may have a carboxylate functional group attached to one of the terminal carbon atoms to form an ether-PFAS carboxylate. Perfluoropolyethers are used as processing aids in the manufacture of various types of perfluorinated polymeric materials which are used in a variety of consumer applications. Although the physicochemical and toxicological properties of certain perfluoropolyether compounds have been extensively studied, data are relatively sparse for some members of this class of compounds. Moreover, the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS as a class have not been elucidated in previous comprehensive review articles. This article reviews the nomenclature and uses of ether-PFAS and compares the physicochemical properties, toxicokinetic characteristics, apical effects in toxicological studies, and dose-response profiles across four specific ether-PFAS compounds. This comparison, including a description of identified data gaps should help to inform the design of studies to further elucidate the characteristics of ether-PFAS and to propose potential read-across assessment strategies for members of this class.


Assuntos
Poluentes Ambientais/toxicidade , Éteres/toxicidade , Fluorocarbonos/toxicidade , Testes de Toxicidade , Animais , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Éteres/química , Fluorocarbonos/química , Humanos , Estrutura Molecular , Medição de Risco , Relação Estrutura-Atividade , Toxicocinética
18.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498193

RESUMO

Due to their unique chemical properties, per- and polyfluoroalkyl substances (PFAS) have been used extensively as industrial surfactants and processing aids. While several types of PFAS have been voluntarily phased out by their manufacturers, these chemicals continue to be of ecological and public health concern due to their persistence in the environment and their presence in living organisms. Moreover, while the compounds referred to as "legacy" PFAS remain in the environment, alternative compounds have emerged as replacements for their legacy predecessors and are now detected in numerous matrices. In this review, we discuss the historical uses of PFAS, recent advances in analytical techniques for analysis of these compounds, and the fate of PFAS in the environment. In addition, we evaluate current biomonitoring studies of human exposure to legacy and emerging PFAS and examine the associations of PFAS exposure with human health impacts, including cancer- and non-cancer-related outcomes. Special focus is given to short-chain perfluoroalkyl acids (PFAAs) and ether-substituted, polyfluoroalkyl alternatives including hexafluoropropylene oxide dimer acid (HFPO-DA; tradename GenX), 4,8-dioxa-3H-perfluorononanoic acid (DONA), and 6:2 chlorinated polyfluoroethersulfonic acid (6:2 Cl-PFESA; tradename F-53B).


Assuntos
Carcinógenos Ambientais/toxicidade , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Animais , Biodegradação Ambiental , Carcinógenos Ambientais/química , Poluentes Ambientais/química , Fluorocarbonos/química , Humanos
19.
Toxicol Pathol ; 48(3): 494-508, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32138627

RESUMO

GenX is an alternative to environmentally persistent long-chain perfluoroalkyl and polyfluoroalkyl substances. Mice exposed to GenX exhibit liver hypertrophy, elevated peroxisomal enzyme activity, and other apical endpoints consistent with peroxisome proliferators. To investigate the potential role of peroxisome proliferator-activated receptor alpha (PPARα) activation in mice, and other molecular signals potentially related to observed liver changes, RNA sequencing was conducted on paraffin-embedded liver sections from a 90-day subchronic toxicity study of GenX conducted in mice. Differentially expressed genes were identified for each treatment group, and gene set enrichment analysis was conducted using gene sets that represent biological processes and known canonical pathways. Peroxisome signaling and fatty acid metabolism were among the most significantly enriched gene sets in both sexes at 0.5 and 5 mg/kg GenX; no pathways were enriched at 0.1 mg/kg. Gene sets specific to the PPARα subtype were significantly enriched. These findings were phenotypically anchored to histopathological changes in the same tissue blocks: hypertrophy, mitoses, and apoptosis. In vitro PPARα transactivation assays indicated that GenX activates mouse PPARα. These results indicate that the liver changes observed in GenX-treated mice occur via a mode of action (MOA) involving PPARα, an important finding for human health risk assessment as this MOA has limited relevance to humans.


Assuntos
Hidrocarbonetos Fluorados/toxicidade , Fígado/efeitos dos fármacos , PPAR alfa/efeitos dos fármacos , Propionatos/toxicidade , Animais , Feminino , Humanos , Masculino , Camundongos , Medição de Risco , Transcriptoma/efeitos dos fármacos
20.
Environ Toxicol ; 35(12): 1395-1405, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32790152

RESUMO

Per- and polyfluoroalkyl substances (PFAS), a class of environmental contaminants, have been detected in human placenta and cord blood. The mechanisms driving PFAS-induced effects on the placenta and adverse pregnancy outcomes are not well understood. This study investigated the impact of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and a replacement PFAS known as hexafluoropropylene oxide dimer acid (HFPO-DA, tradename GenX) on placental trophoblasts in vitro. Several key factors were addressed. First, PFAS levels in cell culture reagents at baseline were quantified. Second, the role of supplemental media serum in intracellular accumulation of PFAS in a human trophoblast (JEG3) cell line was established. Finally, the impact of PFAS on the expression of 96 genes involved in proper placental function in JEG3 cells was evaluated. The results revealed that serum-free media (SFM) contained no detectable PFAS. In contrast, fetal bovine serum-supplemented media (SSM) contained PFNA, PFUdA, PFTrDA, and 6:2 FTS, but these PFAS were not detected internally in cells. Intracellular accumulation following 24 hr treatments was significantly higher when cultured in SFM compared to SSM for PFOS and PFOA, but not HFPO-DA. Treatment with PFAS was associated with gene expression changes (n = 32) in pathways vital to placental function, including viability, syncytialization, inflammation, transport, and invasion/mesenchymal transition. Among the most robust PFAS-associated changes were those observed in the known apoptosis-related genes, BAD and BAX. These results suggest a complex relationship between PFAS, in vitro culture conditions, and altered expression of key genes necessary for proper placentation.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Expressão Gênica/efeitos dos fármacos , Placenta/efeitos dos fármacos , Soro/química , Trofoblastos/efeitos dos fármacos , Ácidos Alcanossulfônicos/sangue , Ácidos Alcanossulfônicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Bioacumulação/efeitos dos fármacos , Bioacumulação/genética , Caprilatos/sangue , Caprilatos/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Meios de Cultura Livres de Soro , Feminino , Fluorocarbonos/sangue , Fluorocarbonos/metabolismo , Humanos , Placenta/metabolismo , Gravidez , RNA Mensageiro/genética , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa