Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(3): 911-926, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33022034

RESUMO

A key challenge in understanding how organisms adapt to their environments is to identify the mutations and genes that make it possible. By comparing patterns of sequence variation to neutral predictions across genomes, the targets of positive selection can be located. We applied this logic to house mice that invaded Gough Island (GI), an unusual population that shows phenotypic and ecological hallmarks of selection. We used massively parallel short-read sequencing to survey the genomes of 14 GI mice. We computed a set of summary statistics to capture diverse aspects of variation across these genome sequences, used approximate Bayesian computation to reconstruct a null demographic model, and then applied machine learning to estimate the posterior probability of positive selection in each region of the genome. Using a conservative threshold, 1,463 5-kb windows show strong evidence for positive selection in GI mice but not in a mainland reference population of German mice. Disproportionate shares of these selection windows contain genes that harbor derived nonsynonymous mutations with large frequency differences. Over-represented gene ontologies in selection windows emphasize neurological themes. Inspection of genomic regions harboring many selection windows with high posterior probabilities pointed to genes with known effects on exploratory behavior and body size as potential targets. Some genes in these regions contain candidate adaptive variants, including missense mutations and/or putative regulatory mutations. Our results provide a genomic portrait of adaptation to island conditions and position GI mice as a powerful system for understanding the genetic component of natural selection.


Assuntos
Evolução Biológica , Tamanho Corporal/genética , Genoma , Camundongos/genética , Seleção Genética , Adaptação Biológica/genética , Animais , Ilhas Atlânticas
2.
BMC Genomics ; 21(1): 800, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203382

RESUMO

BACKGROUND: Fat tail is a unique trait in sheep acquired during domestication. Several genomic analyses have been conducted in sheep breeds from limited geographic origins to identify the genetic factors underlying this trait. Nevertheless, these studies obtained different candidates. The results of these regional studies were easily biased by the breed structures. RESULTS: To minimize the bias and distinguish the true candidates, we used an extended data set of 968 sheep representing 18 fat-tailed breeds and 14 thin-tailed breeds from around the world, and integrated two statistical tests to detect selection signatures, including Genetic Fixation Index (FST) and difference of derived allele frequency (ΔDAF). The results showed that platelet derived growth factor D (PDGFD) exhibited the highest genetic differentiation between fat- and thin-tailed sheep breeds. Analysis of sequence variation identified that a 6.8-kb region within the first intron of PDGFD is likely the target of positive selection and contains regulatory mutation(s) in fat-tailed sheep. Histological and gene expression analyses demonstrated that PDGFD expression is associated with maturation and hemostasis of adipocytes. Further retrospective analysis of public transcriptomic datasets revealed that PDGFD expression is down-regulated during adipogenesis in both human and mouse, and is higher in fat tissues of obese individuals than that in lean individuals. CONCLUSIONS: These results reveal that PDGFD is the predominant factor for the fat tail phenotype in sheep by contributing to adiopogenesis and maintaining the hemostasis of mature adipocytes. This study provides insights into the selection of fat-tailed sheep and has important application to animal breeding, as well as obesity-related human diseases.


Assuntos
Tecido Adiposo , Cruzamento , Fator de Crescimento Derivado de Plaquetas/genética , Cauda , Animais , Genômica , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Ovinos/genética
3.
Anim Genet ; 49(5): 393-402, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30109710

RESUMO

The service sire has been recognized as an important factor affecting herd fertility in dairy cattle. Recent studies suggest that genetic factors explain part of the difference in fertility among Holstein sires. The main objective of this study was to dissect the genetic architecture of sire fertility in US Jersey cattle. The dataset included 1.5 K Jersey bulls with sire conception rate (SCR) records and 96 K single nucleotide polymorphism (SNP) markers spanning the whole genome. The analysis included whole-genome scans for both additive and non-additive effects and subsequent functional enrichment analyses using KEGG Pathway, Gene Ontology (GO) and Medical Subject Headings (MeSH) databases. Ten genomic regions located on eight different chromosomes explained more than 0.5% of the additive genetic variance for SCR. These regions harbor genes, such as PKDREJ, EPB41L2, PDGFD, STX2, SLC25A20 and IP6K1, that are directly implicated in testis development and spermatogenesis, sperm motility and the acrosome reaction. In addition, the genomic scan for non-additive effects identified two regions on BTA11 and BTA25 with marked recessive effects. These regions harbor three genes-FER1L5, CNNM4 and DNAH3-with known roles in sperm biology. Moreover, the gene-set analysis revealed terms associated with calcium regulation and signaling, membrane fusion, sperm cell energy metabolism, GTPase activity and MAPK signaling. These gene sets are directly implicated in sperm physiology and male fertility. Overall, this integrative genomic study unravels genetic variants and pathways affecting Jersey bull fertility. These findings may contribute to the development of novel genomic strategies for improving sire fertility in Jersey cattle.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Fertilidade , Locos de Características Quantitativas , Animais , Cromossomos de Mamíferos/genética , Estudo de Associação Genômica Ampla , Masculino , Polimorfismo de Nucleotídeo Único
4.
Mol Ecol ; 26(15): 3982-3997, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28256062

RESUMO

Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole-genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.


Assuntos
Evolução Molecular , Especiação Genética , Variação Genética , Passeriformes/genética , Animais , Genoma , Passeriformes/classificação , Fenótipo , Isolamento Reprodutivo
5.
Mol Ecol ; 24(14): 3529-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943689

RESUMO

In spite of the long-term interest in the process of balancing selection, its frequency in genomes and evolutionary significance remain unclear due to challenges related to its detection. Current statistical approaches based on patterns of variation observed in molecular data suffer from low power and a high incidence of false positives. This raises the question whether balancing selection is rare or is simply difficult to detect. We discuss genetic signatures produced by this mode of selection and review the current approaches used for their identification in genomes. Advantages and disadvantages of the available methods are presented, and areas where improvement is possible are identified. Increased specificity and reduced rate of false positives may be achieved by using a demographic model, applying combinations of tests, appropriate sampling scheme and taking into account intralocus variation in selection pressures. We emphasize novel solutions, recently developed model-based approaches and good practices that should be implemented in future studies looking for signals of balancing selection. We also draw attention of the readers to the results of recent theoretical studies, which suggest that balancing selection may be ubiquitous but transient, leaving few signatures detectable by existing methods. Testing this new theory may require the development of novel high-throughput methods extending beyond genomic scans.


Assuntos
Evolução Biológica , Modelos Genéticos , Polimorfismo Genético , Seleção Genética , Frequência do Gene , Genética Populacional , Genoma , Desequilíbrio de Ligação
6.
Mol Ecol ; 24(16): 4238-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26175196

RESUMO

Recently diverged taxa provide the opportunity to search for the genetic basis of the phenotypes that distinguish them. Genomic scans aim to identify loci that are diverged with respect to an otherwise weakly differentiated genetic background. These loci are candidates for being past targets of selection because they behave differently from the rest of the genome that has either not yet differentiated or that may cross species barriers through introgressive hybridization. Here we use a reduced-representation genomic approach to explore divergence among six species of southern capuchino seedeaters, a group of recently radiated sympatric passerine birds in the genus Sporophila. For the first time in these taxa, we discovered a small proportion of markers that appeared differentiated among species. However, when assessing the significance of these signatures of divergence, we found that similar patterns can also be recovered from random grouping of individuals representing different species. A detailed demographic inference indicates that genetic differences among Sporophila species could be the consequence of neutral processes, which include a very large ancestral effective population size that accentuates the effects of incomplete lineage sorting. As these neutral phenomena can generate genomic scan patterns that mimic those of markers involved in speciation and phenotypic differentiation, they highlight the need for caution when ascertaining and interpreting differentiated markers between species, especially when large numbers of markers are surveyed. Our study provides new insights into the demography of the southern capuchino radiation and proposes controls to distinguish signal from noise in similar genomic scans.


Assuntos
Especiação Genética , Passeriformes/genética , Simpatria , Animais , Teorema de Bayes , Feminino , Fluxo Gênico , Loci Gênicos , Genética Populacional , Genômica , Masculino , Modelos Genéticos , Passeriformes/classificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , América do Sul
7.
Mol Ecol ; 24(20): 5229-47, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26346701

RESUMO

The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor-derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.


Assuntos
Especiação Genética , Hibridização Genética , Picea/genética , DNA de Plantas/genética , Fluxo Gênico , Genes de Plantas , Genética Populacional , Genótipo , Picea/classificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
8.
J Anim Breed Genet ; 131(5): 358-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24602159

RESUMO

Despite the wide range of observed phenotypic diversities and adaptation to different ecological conditions, little has been studied regarding the genetics of adaptation in the genome of indigenous cattle breeds of developing countries. Here, we investigated the linkage disequilibrium (LD) and identified the subset of outlier loci that are highly differentiated among cattle populations adapted to different ecological conditions in Ethiopia. Specifically, we genotyped 47 unrelated animals sampled from high- versus low-altitude environments using a Bovine 50K SNP BeadChip. Linkage disequilibrium was assessed using both D' and r(2) between adjacent SNPs. We calculated FST and heterozygosity at different significance levels as measures of genetic differentiation for each locus between high- and low-altitude populations following the hierarchical island model approach. We identified 816 loci (p < 0.01) showing selection signals and are associated with genes that might have roles in local adaptation. Some of them are associated with candidate genes that are involved in metabolism (ATP2A3, CA2, MYO18B, SIK3, INPP4A, and IREB2), hypoxia response (BDNF, TFRC, and PML) and heat stress (PRKDC, CDK1, and TFDC). Average r(2) and D' values were 0.14 ± 0.21 and 0.57 ± 0.34, respectively, for a minor allele frequency (MAF) ≥ 0.05 and were found to increase with increasing MAF value. The outlier loci identified in the studied Ethiopian cattle populations indicate the presence of genetic variation produced/shaped by adaptation to different environmental conditions and provide a basis for further validation and functional analysis using a reasonable sample size and high-density markers.


Assuntos
Bovinos/genética , Desequilíbrio de Ligação , Adaptação Biológica/genética , Altitude , Animais , Etiópia , Frequência do Gene , Estudos de Associação Genética , Genótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética
9.
Animals (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681887

RESUMO

The fat tail is a phenotype that divides indigenous Iranian sheep genetic resources into two major groups. The objective of the present study is to refine the map location of candidate regions associated with fat deposition, obtained via two separate whole genome scans contrasting thin and fat tail breeds, and to determine the nature of the selection occurring in these regions using a hitchhiking approach. Zel (thin tail) and Lori-Bakhtiari (fat tail) breed samples that had previously been run on the Illumina Ovine 50 k BeadChip, were genotyped with a denser set of SNPs in the three candidate regions using a Sequenom Mass ARRAY platform. Statistical tests were then performed using different and complementary methods based on either site frequency (FST and Median homozygosity) or haplotype (iHS and XP-EHH). The results from candidate regions on chromosome 5 and X revealed clear evidence of selection with the derived haplotypes that was consistent with selection to near fixation for the haplotypes affecting fat tail size in the fat tail breed. An analysis of the candidate region on chromosome 7 indicated that selection differentiated the beneficial alleles between breeds and homozygosity has increased in the thin tail breed which also had the ancestral haplotype. These results enabled us to confirm the signature of selection in these regions and refine the critical intervals from 113 kb, 201 kb, and 2831 kb to 28 kb, 142 kb, and 1006 kb on chromosome 5, 7, and X respectively. These regions contain several genes associated with fat metabolism or developmental processes consisting of TCF7 and PPP2CA (OAR5), PTGDR and NID2 (OAR7), AR, EBP, CACNA1F, HSD17B10,SLC35A2, BMP15, WDR13, and RBM3 (OAR X), and each of which could potentially be the actual target of selection. The study of core haplotypes alleles in our regions of interest also supported the hypothesis that the first domesticated sheep were thin tailed, and that fat tail animals were developed later. Overall, our results provide a comprehensive assessment of how and where selection has affected the patterns of variation in candidate regions associated with fat deposition in thin and fat tail sheep breeds.

10.
Front Plant Sci ; 13: 880631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311100

RESUMO

Pearl millet is among the top three-cereal production in one of the most climate vulnerable regions, sub-Saharan Africa. Its Sahelian origin makes it adapted to grow in poor sandy soils under low soil water regimes. Pearl millet is thus considered today as one of the most interesting crops to face the global warming. Flowering time, a trait highly correlated with latitude, is one of the key traits that could be modulated to face future global changes. West African pearl millet landraces, can be grouped into early- (EF) and late-flowering (LF) varieties, each flowering group playing a specific role in the functioning and resilience of Sahelian smallholders. The aim of this study was thus to detect genes linked to flowering but also linked to relevant traits within each flowering group. We thus investigated genomic and phenotypic diversity in 109 pearl millet landrace accessions, i.e., 66 early-flowering and 43 late-flowering, grown in the groundnut basin, the first area of rainfed agriculture in Senegal dominated by dry cereals (millet, maize, and sorghum) and legumes (groundnuts, cowpeas). We were able to confirm the role of PhyC gene in pearl millet flowering and identify several other genes that appear to be as much as important, such as FSR12 and HAC1. HAC1 and two other genes appear to be part of QTLs previously identified and deserve further investigation. At the same time, we were able to highlight a several genes and variants that could contribute to the improvement of pearl millet yield, especially since their impact was demonstrated across flowering cycles.

11.
Front Genet ; 12: 803216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058972

RESUMO

Visceral fat is related to important metabolic processes, including insulin sensitivity and lipid mobilization. The goal of this study was to identify individual genes, pathways, and molecular processes implicated in visceral fat deposition in dairy cows. Data from 172 genotyped Holstein cows classified at slaughterhouse as having low (n = 77; omental fold < 5 mm in thickness and minimum fat deposition in omentum) or high (n = 95; omental fold ≥ 20 mm in thickness and marked fat deposition in omentum) omental fat were analyzed. The identification of regions with significant additive and non-additive genetic effects was performed using a two-step mixed model-based approach. Genomic scans were followed by gene-set analyses in order to reveal the genetic mechanisms controlling abdominal obesity. The association mapping revealed four regions located on BTA19, BTA20 and BTA24 with significant additive effects. These regions harbor genes, such as SMAD7, ANKRD55, and the HOXB family, that are implicated in lipolysis and insulin tolerance. Three regions located on BTA1, BTA13, and BTA24 showed marked non-additive effects. These regions harbor genes MRAP, MIS18A, PRNP and TSHZ1, that are directly implicated in adipocyte differentiation, lipid metabolism, and insulin sensitivity. The gene-set analysis revealed functional terms related to cell arrangement, cell metabolism, cell proliferation, cell signaling, immune response, lipid metabolism, and membrane permeability, among other functions. We further evaluated the genetic link between visceral fat and two metabolic disorders, ketosis, and displaced abomasum. For this, we analyzed 28k records of incidence of metabolic disorders from 14k cows across lactations using a single-step genomic BLUP approach. Notably, the region on BTA20 significantly associated with visceral fat deposition was also associated with the incidence of displaced abomasum. Overall, our findings suggest that visceral fat deposition in dairy cows is controlled by both additive and non-additive effects. We detected at least one region with marked pleiotropic effects affecting both visceral fat accumulation and displaced abomasum.

12.
Front Genet ; 10: 928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636656

RESUMO

Heat stress represents a major environmental factor that negatively affects the health and performance of dairy cows, causing huge economic losses to the dairy industry. Identifying and selecting animals that are thermotolerant is an attractive alternative for reducing the negative effects of heat stress on dairy cattle performance. As such, the objectives of the present study were to estimate genetic components of milk yield, fat yield, and protein yield considering heat stress and to perform whole-genome scans and a subsequent gene-set analysis for identifying candidate genes and functional gene-sets implicated in milk production under heat stress conditions. Data consisted of about 254k test-day records from 17,522 Holstein cows. Multi-trait repeatability test day models with random regressions on a function of temperature-humidity index (THI) values were used for genetic analyses. The models included herd-test-day and DIM classes as fixed effects, and general and thermotolerance additive genetic and permanent environmental as random effects. Notably, thermotolerance additive genetic variances for all milk traits increased across parities suggesting that cows become more sensitive to heat stress as they age. In addition, our study revealed negative genetic correlations between general and thermotolerance additive effects, ranging between -0.18 to -0.68 indicating that high producing cows are more susceptible to heat stress. The association analysis identified at least three different genomic regions on BTA5, BTA14, and BTA15 strongly associated with milk production under heat stress conditions. These regions harbor candidate genes, such as HSF1, MAPK8IP1, and CDKN1B that are directly involved in the cellular response to heat stress. Moreover, the gene-set analysis revealed several functional terms related to heat shock proteins, apoptosis, immune response, and oxidative stress, among others. Overall, the genes and pathways identified in this study provide a better understanding of the genetic architecture underlying dairy cow performance under heat stress conditions. Our findings point out novel opportunities for improving thermotolerance in dairy cattle through marker-assisted breeding.

13.
Sci Adv ; 3(5): e1602404, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560331

RESUMO

Instances of recent and rapid speciation are suitable for associating phenotypes with their causal genotypes, especially if gene flow homogenizes areas of the genome that are not under divergent selection. We study a rapid radiation of nine sympatric bird species known as capuchino seedeaters, which are differentiated in sexually selected characters of male plumage and song. We sequenced the genomes of a phenotypically diverse set of species to search for differentiated genomic regions. Capuchinos show differences in a small proportion of their genomes, yet selection has acted independently on the same targets in different members of this radiation. Many divergent regions contain genes involved in the melanogenesis pathway, with the strongest signal originating from putative regulatory regions. Selection has acted on these same genomic regions in different lineages, likely shaping the evolution of cis-regulatory elements, which control how more conserved genes are expressed and thereby generate diversity in classically sexually selected traits.


Assuntos
Tentilhões/genética , Genoma , Pigmentação/genética , Característica Quantitativa Herdável , Seleção Genética , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa