Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Environ Sci (China) ; 139: 1-11, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105037

RESUMO

The lack of understanding of heavy metal speciation and solubility control mechanisms in smelting soils limits the effective pollution control. In this study smelting soils were investigated by an advanced mineralogical analysis (AMICS), leaching tests and thermodynamic modelling. The aims were to identify the partitioning and release behaviour of Pb, Zn, Cd and As. The integration of multiple techniques was necessary and displayed coherent results. In addition to the residual fraction, Pb and Zn were predominantly associated with reducible fractions, and As primarily existed as the crystalline iron oxide-bound fractions. AMICS quantitative analysis further confirmed that Fe oxyhydroxides were the common dominant phase for As, Cd, Pb and Zn. In addition, a metal arsenate (paulmooreite) was an important mineral host for Pb and As. The pH-stat leaching indicted that the release of Pb, Zn and Cd increased towards low pH values while release of As increased towards high pH values. The separate leaching schemes were associated with the geochemical behaviour under the control of minerals and were confirmed by thermodynamic modelling. PHREEQC calculations suggested that the formation of arsenate minerals (schultenite, mimetite and koritnigite) and the binding to Fe oxyhydroxides synchronously controlled the release of Pb, Zn, Cd and As. Our results emphasized the governing role of Fe oxyhydroxides and secondary insoluble minerals in natural attenuation of heavy metals, which provides a novelty strategy for the stabilization of multi-metals in smelting sites.


Assuntos
Metais Pesados , Poluentes do Solo , Zinco/análise , Arseniatos , Chumbo/análise , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Minerais , China
2.
Environ Geochem Health ; 45(8): 6567-6583, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341892

RESUMO

Evaluating the hydrogeochemistry and groundwater quality status is vital to understand the sources and extent of groundwater contamination. Chemometric analysis, geochemical modelling and entropy technique were explored to delineate the hydrogeochemistry of groundwater in the trans-Himalayan region. Analysis of hydrochemical facies revealed that 57.14, 39.29, and 3.57% of samples were Ca-Mg-HCO3-, Ca-Mg-Cl- and Mg-HCO3- water types, respectively. Gibbs diagrams illustrate the effects of the dissolution of carbonates and silicates during weathering on groundwater hydrogeochemistry. The PHREEQC modelling depicted that most of the secondary minerals are supersaturated except for halite, sylvite, and magnetite which are undersaturated and in equilibrium with nature. Multivariate statistical techniques, including principal component analysis, were applied for source apportionment indicating that the hydrochemistry of the groundwater was mainly controlled by geogenic sources (rock-water interaction) along with secondary pollution through increased anthropogenic sources. Heavy metal accumulation in groundwater depicted the order of Cd > Cr > Mn > Fe > Cu > Ni > Zn. EWQI analysis revealed that none of the samples fell into excellent and good categories. In total, 92.86% of groundwater samples were in an average category while the rest of the samples (7.14%) were unfit for drinking. This study will provide baseline data and a scientific framework which can be used in source apportionment studies, predictive modelling and efficient management of water resources.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Entropia , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Índia , Água/análise , Qualidade da Água
3.
J Environ Manage ; 321: 115866, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985264

RESUMO

The permeable reactive barrier has been deemed as the most prudent and pragmatic way to passively manage and remediate acid mine drainage (AMD). Herein, insights into mechanisms governing the removal of inorganic contaminants from AMD using a permeable reactive barrier (PRB), i.e. pervious concrete, were reported. In particular, the effects of varying dosages, i.e., 6, 10, 30, and 60 g, of cementitious materials comprising CEM I 52.5R with or without fly ash, hydrated lime, and gypsum were evaluated whilst the fate of chemical species was underpinned using the state-of-the-art analytical techniques, along with PHREEQC geochemical modelling. The role of gypsum, a product formed from the interaction of PRB with AMD in heavy metals attenuation was also elucidated. Findings revealed cementitious materials to play an indispensable role in the removal of inorganic contaminants from AMD. Furthermore, alkalinity from used materials increases the pH (i.e. pH ≥ 12.5) of AMD leading to the precipitation of chemical species. Specifically, the efficacy registered the following sequence: Lime ≥ CEM I ≥ 30%FA ≥ Gypsum with ≥99 for Al and Fe except for Gypsum which attained ≥98 while the performance for Zn removal registered the following sequence, 97 ≥ 98 ≥ 88.8 ≥ 45% for CEM I ≥ Lime ≥30%FA ≥ Gypsum, respectively. Chemical species exist as divalent, trivalent, oxyanions, and other complexes in solution as predicted by PHREEQC. Moreover, they were removed as metal hydroxides, oxyhydrosulphates, and gypsum hence corroborating findings from XRD, SEM-EDS, and FTIR results. Mechanisms which were responsible for the removal of chemical species were precipitation, adsorption, co-adsorption, co-precipitation, ion exchange, and complexation. Henceforth, this study explicitly demonstrated mechanisms that underpin the removal of inorganic contaminants from AMD using PRB and findings from this study will be used to develop effective PRB for the management of acid mine drainage and the receiving environment.


Assuntos
Sulfato de Cálcio , Poluentes Químicos da Água , Ácidos , Cinza de Carvão , Concentração de Íons de Hidrogênio , Metais , Mineração , Poluentes Químicos da Água/química
4.
Environ Monit Assess ; 194(12): 891, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242649

RESUMO

The main aim of this research is to assess the consequences of natural and anthropogenic processes on the groundwater quality of 65 deep aquifers of Nagpur city, Maharashtra Province, India, using a unified multivariate statistical approach. The dominant groundwater type recognized is Ca-HCO3 (recharge waters) in 43.1 and 38.5% of groundwater samples of pre- and post-monsoon seasons, followed by mixed water types. The seasonal distribution of physicochemical parameters shows increase in the concentration of EC, TDS, TH, Mg2+, SO42-, and NO3- signifying the high mineralization and anthropogenic loading from pre- and post-monsoon season respectively. The entropy-weight water quality index categorizes the 84.6% and 75.4% of total samples from pre- and post-monsoon seasons into moderate quality. The multiple linear regression and PCA analysis reveal the masking of rock weathering mechanism by anthropogenic activities. The % of PCA Variance varies from 79 to 83.7% from pre- to post-monsoon season. The high contributions of EC (0.76, 0.72), TDS (0.79, 0.73), TH (0.97, 0.962), Ca2+ (0.84, 0.78), Mg2+ (0.79, 0.83), Cl- (0.73, 0.75), and NO3- (0.78, 0.68) in PC1 components expose high salinity and hardness in urban groundwater that signifies the consequences of urbanization on the groundwater regime. About 55.4 and 70.8% of children population as compared to the adult female (53.8%, 69.2%) and male (32.3%, 46.1%) population in PRM and POM respectively were at high non-carcinogenic health threat of NO3--enriched groundwater. The study is beneficial for understanding the variation in groundwater composition due to unplanned urbanization and is very useful for protecting groundwater resources in urban areas.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Feminino , Humanos , Masculino , Monitoramento Ambiental , Água Subterrânea/química , Índia , Poluentes Químicos da Água/análise , Qualidade da Água
5.
J Environ Manage ; 277: 111416, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039703

RESUMO

The many uses of palladium in medicine, catalysts and other industries make it a very important precious element. Many industries using palladium discharge process wastewaters that may release elevated concentrations of palladium into the environment. This study focused on the recovery of palladium from aqueous solutions by zeolite functionalised with spent brewer's yeast. Batch experimental results were used to calibrate a generalised surface complexation model based on coupling parameter estimation (PEST) to the PHREEQC geochemical modelling code. PHREEQC is an acronym which stands for pH, redox, equilibrium and C programming language. Calibration was based on the determination of sorption constants for the reactions of palladium with the adsorbent. The generalised amine surface groups (derived from yeast), the moles of adsorption sites and surface area were specified. The recovery of palladium was assessed as a function of solution pH, adsorbent dosage and initial concentration of palladium in the presence of other cations and anions at different concentrations. The highest recovery of palladium (>97%) was observed at pH 2 and 10 g L-1 adsorbent dosage which, decreased with increasing solution pH. The amount of palladium removed increased in the presence of competing ions and anions. There was no significant difference (p > 0.05) between the modelled and measured data, which indicated that PHREEQC modelling code coupled with PEST can accurately determine the recovery of palladium using amine-based adsorbents when all the required information is specified. This is very useful in instances where limited experimental data is available for non-conventional and novel surfaces to make accurate predictions of sorption processes involving them.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Aminas , Concentração de Íons de Hidrogênio , Cinética , Paládio
6.
Environ Geochem Health ; 43(2): 683-703, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31758364

RESUMO

A qualitative approach, including geochemical and multivariate statistical approaches, is applied to evaluate the groundwater quality and human health risk, based on analytical data of 72 samples collected from a semi-arid region of eastern Maharashtra, India. The shifting of hydrochemical type from Ca2+-Na+-[Formula: see text] to Na+-Ca2+-Cl- type was observed along different flow paths. The main controlling processes observed from the chemical characterisation of the groundwater are water-rock interactions, dedolomitisation and reverse ion exchange. Simulation analysis (mass transfer) exposes the dissolution of dolomite, gypsum, halite, k-feldspar and CO2 down the simulated pathways. Around 77% of the total variance was observed from the first three principal component analyses. The high positive loadings of EC, TDS, Na+, K+, Ca2+, Cl-, [Formula: see text] and [Formula: see text] of PC1 revealed silicate weathering and reverse ion exchange followed by human activities as the contamination sources. The sources identified for high positive loadings on [Formula: see text] and [Formula: see text] of PC2 are soil CO2 and human activities. The high loadings of pH and F- in PC3 revealed fluorite dissolution and calcite precipitation. The human health risk calculated for [Formula: see text] revealed that 58% and 44% of the total groundwater samples surpassed the tolerance limit for non-carcinogenic risk of 1.0 in children and adults. The human health risk assessment for fluoride showed high hazard index values in 40% and 23% of the total groundwater samples for children and adults, respectively. The study suggests some management measures for protection of groundwater resources.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Adulto , Criança , Humanos , Índia , Análise Multivariada , Medição de Risco
7.
Int J Biometeorol ; 64(5): 815-826, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048015

RESUMO

In some countries (e.g. Poland, Czechia, Slovakia, Russia, Germany), oxidation-reduction potential (ORP) measurements are required to document the quality of groundwater which are planned to be used as therapeutic waters. ORP is still rarely studied and not fully availed in therapeutic water research. Studies of ORP in various types of therapeutic, mineral and thermal waters in sites of Poland integrated with geochemical equilibrium approach were employed to characterize two redox-sensitive and bioactive elements, i.e. iron and sulphur. Studied waters present reducing conditions (EH between - 406 and - 41 mV) at outflow or extraction sites; however, they significantly differ in terms of total dissolved solids, temperature, and iron, sulphur(II) and sulphate concentrations. These result in recognizable differences, e.g. in terms of saturation state with respect to aquifer rock minerals and the dominating forms of occurrence of elements studied disclosed on the stability field diagrams. Considering the methodological determinants, ORP orchestrated with geochemical modelling tools might be successfully applied for studying natural linkages between various groundwater in natural systems, protecting the therapeutic water resource, and identifying the changes of water quality both at exploitation sites (springs, wells) and treatment places.


Assuntos
Água Subterrânea , Monitoramento Ambiental , Alemanha , Oxirredução , Polônia , Federação Russa
8.
J Environ Manage ; 204(Pt 1): 695-703, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28963970

RESUMO

The leaching behaviour of a road construction with fayalitic copper slag, recycled concrete and crushed rock as sub-base materials was monitored over ten years. All studied materials used in the road construction, including crushed rock, contained concentrations of several elements exceeding the guideline values recommended by the Swedish EPA for total element concentrations for waste materials used in constructions. Despite that, leaching from the road construction under field conditions in general was relatively low. The leachates from the recycled materials contained higher concentrations of several constituents than the leachates from the reference section with crushed rock. The leaching of the elements of interest (Cr, Mo, Ni, Zn) reached peak concentrations during the second and fourth (Cu) years and decreased over the observation period to levels below the Swedish recommended values. Carbonation of the concrete aggregates caused a substantial but short-term increase in the leaching of oxyanions such as chromate. The environmental risks related to element leaching are highest at the beginning of the road life. Ageing of materials or pre-treatment through leaching is needed prior to their use in construction to avoid peak concentrations. Also, the design of road constructions should be adjusted so that recycled materials are covered with low-permeability covers, which would minimize the exposure to atmospheric precipitation and weathering.


Assuntos
Carbonatos/química , Materiais de Construção , Cobre/química , Reciclagem , Suécia
9.
Environ Monit Assess ; 188(3): 135, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842239

RESUMO

Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January-February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca-HCO3 to Mg-SO4 type and are controlled by water-rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards's diagrams. This aquifer has been classified as "excellent water" serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Abastecimento de Água/estatística & dados numéricos , Agricultura , Água Potável/análise , Água Potável/química , Água Subterrânea/química , Humanos , Análise Multivariada , Tunísia , Qualidade da Água , Recursos Hídricos/provisão & distribuição
10.
Ann Bot ; 115(3): 343-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25538113

RESUMO

BACKGROUND AND AIMS: Salt tolerance has evolved many times independently in different plant groups. One possible explanation for this pattern is that it builds upon a general suite of stress-tolerance traits. If this is the case, then we might expect a correlation between salt tolerance and other tolerances to different environmental stresses. This association has been hypothesized for salt and alkalinity tolerance. However, a major limitation in investigating large-scale patterns of these tolerances is that lists of known tolerant species are incomplete. This study explores whether species' salt and alkalinity tolerance can be predicted using geochemical modelling for Australian grasses. The correlation between taxa found in conditions of high predicted salinity and alkalinity is then assessed. METHODS: Extensive occurrence data for Australian grasses is used together with geochemical modelling to predict values of pH and electrical conductivity to which species are exposed in their natural distributions. Using parametric and phylogeny-corrected tests, the geochemical predictions are evaluated using a list of known halophytes as a control, and it is determined whether taxa that occur in conditions of high predicted salinity are also found in conditions of high predicted alkalinity. KEY RESULTS: It is shown that genera containing known halophytes have higher predicted salinity conditions than those not containing known halophytes. Additionally, taxa occurring in high predicted salinity tend to also occur in high predicted alkalinity. CONCLUSIONS: Geochemical modelling using species' occurrence data is a potentially useful approach to predict species' relative natural tolerance to challenging environmental conditions. The findings also demonstrate a correlation between salinity tolerance and alkalinity tolerance. Further investigations can consider the phylogenetic distribution of specific traits involved in these ecophysiological strategies, ideally by incorporating more complete, finer-scale geochemical information, as well as laboratory experiments.


Assuntos
Modelos Biológicos , Poaceae/fisiologia , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal/fisiologia , Austrália , Concentração de Íons de Hidrogênio , Dispersão Vegetal , Cloreto de Sódio/metabolismo
11.
J Environ Sci (China) ; 32: 72-80, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26040733

RESUMO

Experimental and geochemical modelling studies were carried out to identify mineral and solid phases containing major, minor, and trace elements and the mechanism of the retention of these elements in Flue Gas Desulphurisation (FGD)-gypsum samples from a coal-fired power plant under filtered water recirculation to the scrubber and forced oxidation conditions. The role of the pH and related environmental factors on the mobility of Li, Ni, Zn, As, Se, Mo, and U from FGD-gypsums for a comprehensive assessment of element leaching behaviour were also carried out. Results show that the extraction rate of the studied elements generally increases with decreasing the pH value of the FGD-gypsum leachates. The increase of the mobility of elements such as U, Se, and As in the FGD-gypsum entails the modification of their aqueous speciation in the leachates; UO2SO4, H2Se, and HAsO2 are the aqueous complexes with the highest activities under acidic conditions. The speciation of Zn, Li, and Ni is not affected in spite of pH changes; these elements occur as free cations and associated to SO4(2) in the FGD-gypsum leachates. The mobility of Cu and Mo decreases by decreasing the pH of the FGD-gypsum leachates, which might be associated to the precipitation of CuSe2 and MoSe2, respectively. Time-of-Flight mass spectrometry of the solid phase combined with geochemical modelling of the aqueous phase has proved useful in understanding the mobility and geochemical behaviour of elements and their partitioning into FGD-gypsum samples.


Assuntos
Sulfato de Cálcio/química , Carvão Mineral , Centrais Elétricas , Oligoelementos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Água/química , Gases/análise , Concentração de Íons de Hidrogênio , Modelos Químicos , Oxirredução , Enxofre/isolamento & purificação , Termodinâmica
12.
Sci Total Environ ; 912: 168912, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016547

RESUMO

The reaction of phosphorus (P) between sediments and water in streams strongly affects the surface water P concentrations. A new reactive transport model (SWEMP: Sediment-Water Exchange Model for Phosphorus) was developed to describe redox dependent P sorption in the sediment and vertical diffusive transport of solutes to the overlying stream. The model parameters were independently obtained to first predict P release in ten different sediment-water batch systems and in two flumes. Input parameters are the degree of P saturation of the sediment, its organic matter content, dissolved oxygen (DO) concentration and temperature. The dissolved P concentrations in the overlying waters ranged from 0.02 to 1.2 mg P L-1 in these systems and were correctly predicted by the model within, on average, a factor 1.3 (batch) or 1.1 (flume). The P flux from the sediment towards the overlying water increased with increasing sediment P:Fe ratio and respiration rates, and with decreasing DO and water pH. After validation of the model with experimental data, it was used to predict monthly P concentrations in Flemish rivers using the total P emission data, total discharge, average sediment properties and the monthly averaged water temperatures, DO concentrations and electric conductivity. The monthly average P concentrations oscillate annually between 0.24 and 0.73 mg P L-1 and predictions matched the long-term monitoring data within 10 % using only one adjustable parameter for the entire water system (N > 250,000). The model predicts that summer peaks in P are related to internal loading from the sediment under anoxic conditions rather than to emission-dilution effects, i.e. external input of P and/or its concentration at lower flow rates. This suggests that, surface water P concentrations can be lowered by enhanced DO in the water, the addition of Fe and Al rich binding agents to the sediments and by reducing P emissions.

13.
Sci Total Environ ; 929: 172594, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642763

RESUMO

Volcanic islands face unique challenges in protecting and managing their water resources due to their small size, limited freshwater availability, and vulnerability to natural hazards. The recent 2021 eruption of the Tajogaite volcano on La Palma Island in the Canary Islands, Spain, raised concerns regarding the potential impact on groundwater hydrochemistry. This work aimed to characterize and model the processes that lead to the measured hydrochemical impacts in the groundwater of La Palma as a consequence of the volcanic eruption. The study involved conducting three groundwater sampling campaigns during the eruption, and six after the eruption ceased. A total of 15 monitored points, including piezometers, wells, water galleries, and the main gully collector of the island, all relatively close (2 to15 km) to the erupted volcano, were sampled for the analysis of major solutes and SiO2. Unpublished hydrochemical data previous to the eruption were provided by the local water management authorities of La Palma (CIALP) and the Geological Survey of Spain (IGME). Statistical analyses were performed to assess the differences in groundwater composition before, during, and after the eruption, and a Principal Component Analysis (PCA) mixing model was calculated. Three compositional extreme waters were defined as end members in the system: (1) a high SiO2 computed thermal end member; (2) a low salinity computed fresh groundwater; (3) and seawater. The results of the mixing model showed two main events of maximum mixing ratios in the fresh groundwater reservoirs of La Palma after the eruption; the first one of seawater in July 2022, and the next one of thermal fluids in December 2022. This water mixing during and after the eruption, together with a volcanic CO2 input to the reservoirs, led to significant increases in the concentrations of Na, Ca, SiO2 and SO4 in fresh groundwater, as well as a drop in pH. The significance of these findings relies in improving our understanding of the effects of volcanic eruptions on groundwater, emphasizing the necessity for frequent monitoring and evaluation, given the scarcity and vulnerability of groundwater resources in volcanic islands.

14.
Chemosphere ; 312(Pt 1): 137179, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356809

RESUMO

The sources of chemical constituents of groundwater and its associated hydrogeochemical processes in the part of Mhlathuze catchment was identified. Groundwater of the area is classified into soft to very hard and the nature is identified as acidic to alkaline. The overall electrical conductivity is < 3000 µS/cm except in three wells. The predominant water type is NaCl (69% of samples) and CaMgCl facies. Gibbs plots, mCa/Mg ratio, mNa/Cl ratio, Ca + Mg vs HCO3+SO4 plot, Na + K vs HCO3 plot, Ca/Na vs HCO3/Na, Chloroalkaline indices (CAI 1, CAI 2) and Ca + Mg-HCO3-SO4 vs Na + K-Cl plots confirm the impact of silicate, carbonate mineral weathering and ion exchange reaction in this aquifer. However, few wells are influenced by the evaporation process. Groundwater is highly undersaturated with sulphate, chloride minerals and saturated with carbonate minerals. CA revealed that Cl and SO4 are derived from anthropogenic sources and a significant positive correlation between HCO3 and Cl reveals that wastewater recharge has most likely simulated the mineral weathering in the vadose zone, which could have further enhanced HCO3 and Cl in the aquifer. PCA resulted in three factors. Factor 1 defines the influence of geogenic and anthropogenic processes while Factors 2 and 3 imply the mineral weathering and nitrification processes. Hierarchical cluster analysis defines that evaporation, anthropogenic input, silicate and carbonate weathering and nitrification process are the sources of chemical constituents of groundwater in this aquifer.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , África do Sul , Quimiometria , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Carbonatos/análise , Minerais/análise , Qualidade da Água
15.
Environ Pollut ; 318: 120825, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503011

RESUMO

Cyanide, which remains the preferred chemical used in the gold extraction process, has the potential to be disposed of on goldmine tailings. South Africa has nine goldfields, producing approximately a third of the world's gold to date. The cyanide interacts with metals in the tailings environment, where Prussian blue [Formula: see text] and Turnbull's blue [Formula: see text] are among these. In previous studies, Prussian blue or Turnbull's blue have been found as a blue substance in tailings material. PHREEQC modelling software was used adding the mineralogical data from 16 tailings samples from the Free State goldfield. The results revealed that Prussian blue prefers to precipitate in an oxic environment and Turnbull's blue prefers an anoxic environment. It was also determined that their precipitation is affected by the availability of iron in solution. As soon as all of the iron is consumed in solution, all excess cyanide produces HCN, which is a free cyanide which volatilizes. Contrarily, Prussian and Turnbull's blue are CNSAD compounds, only dissociating in extremely low pH condition in the absence of photolysis. Ultimately, these iron-cyanide compounds are able to immobilize cyanide, preventing seepage into environments such as the ground water. This along with an anoxic environment such as mine void, keeping the pH high, may be a possible solution for cyanide remediation.


Assuntos
Cianetos , Compostos de Ferro , Humanos , Cianetos/química , Ouro , Hipóxia , Ferro
16.
Plants (Basel) ; 13(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202379

RESUMO

The application of foliar sprays of suspensions of relatively insoluble essential element salts is gradually becoming common, chiefly with the introduction of nano-technology approaches in agriculture. However, there is controversy about the effectiveness of such sparingly soluble nutrient sources as foliar fertilizers. In this work, we focussed on analysing the effect of adding Ca-carbonate (calcite, CaCO3) micro- and nano-particles as model sparingly soluble mineral compounds to foliar fertilizer formulations in terms of increasing the rate of foliar absorption. For these purposes, we carried out short-term foliar application experiments by treating leaves of species with variable surface features and wettability rates. The leaf absorption efficacy of foliar formulations containing a surfactant and model soluble nutrient sources, namely Ca-chloride (CaCl2), magnesium sulphate (MgSO4), potassium nitrate (KNO3), or zinc sulphate (ZnSO4), was evaluated alone or after addition of calcite particles. In general, the combination of the Ca-carbonate particles with an essential element salt had a synergistic effect and improved the absorption of Ca and the nutrient element provided. In light of the positive effects of using calcite particles as foliar formulation adjuvants, dolomite nano- and micro-particles were also tested as foliar formulation additives, and the results were also positive in terms of increasing foliar uptake. The observed nutrient element foliar absorption efficacy can be partially explained by geochemical modelling, which enabled us to predict how these formulations will perform at least in chemical terms. Our results show the major potential of adding mineral particles as foliar formulation additives, but the associated mechanisms of action and possible additional benefits to plants should be characterised in future investigations.

17.
J Hazard Mater ; 458: 131849, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393826

RESUMO

Identifying immobilization mechanisms of potentially toxic elements (PTEs) is of paramount importance in the field application of solidification/stabilization. Traditionally, demanding and extensive experiments are required to better access the underlying retention mechanisms, which are usually challenging to quantify and clarify precisely. Herein, we present a geochemical model with parametric fitting techniques to reveal the solidification/stabilization of Pb-rich pyrite ash through conventional (ordinary Portland cement) and alternative (calcium aluminate cement) binders. We found that ettringite and calcium silicate hydrates exhibit strong affinities for Pb at alkaline conditions. When the hydration products are unable to stabilize all the soluble Pb in the system, part of the soluble Pb may be immobilized as Pb(OH)2. At acidic and neutral conditions, hematite from pyrite ash and newly-formed ferrihydrite are the main controlling factors of Pb, coupled with anglesite and cerussite precipitation. Thus, this work provides a much-needed complement to this widely-applied solid waste remediation technique for the development of more sustainable mixture formulations.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36767482

RESUMO

Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of Malakand, Pakistan, with particular emphasis on water quality, hydro-geochemistry, spatial distribution, geochemical speciation, and human health impacts. To better understand the groundwater hydrogeochemical profile and HMs enrichment, groundwater samples were collected from the mining region (n = 35), non-mining region (n = 20), and chromite mines water (n = 5) and then analyzed using ICPMS (Agilent 7500 ICPMS). The ranges of concentrations in the mining, non-mining, and chromite mines water were 0.02-4.5, 0.02-2.3, and 5.8-6.0 mg/L for CR, 0.4-3.8, 0.05-3.6, and 3.2-5.8 mg/L for Ni, and 0.05-0.8, 0.05-0.8, and 0.6-1.2 mg/L for Mn. Geochemical speciation of groundwater variables such as OH-, H+, Cr+2, Cr+3, Cr+6, Ni+2, Mn+2, and Mn+3 was assessed by atomic fluorescence spectrometry (AFS). Geochemical speciation determined the mobilization, reactivity, and toxicity of HMs in complex groundwater systems. Groundwater facies showed 45% CaHCO3, 30% NaHCO3, 23.4% NaCl, and 1.6% Ca-Mg-Cl water types. The noncarcinogenic and carcinogenic risk of HMs outlined via hazard quotient (HQ) and total hazard indices (THI) showed the following order: Ni > Cr > Mn. Thus, the HHRA model suggested that children are more vulnerable to HMs toxicity than adults. Hierarchical agglomerative cluster analysis (HACA) showed three distinct clusters, namely the least, moderately, and severely polluted clusters, which determined the severity of HMs contamination to be 66.67% overall. The PCAMLR and PMF receptor model suggested geogenic (minerals prospects), anthropogenic (industrial waste and chromite mining practices), and mixed (geogenic and anthropogenic) sources for groundwater contamination. The mineral phases of groundwater suggested saturation and undersaturation. Nemerow's pollution index (NPI) values determined the unsuitability of groundwater for domestic purposes. The EC, turbidity, PO4-3, Na+, Mg+2, Ca+2, Cr, Ni, and Mn exceeded the guidelines suggested by the World Health Organization (WHO). The HMs contamination and carcinogenic and non-carcinogenic health impacts of HMs showed that the groundwater is extremely unfit for drinking, agriculture, and domestic demands. Therefore, groundwater wells around the mining region need remedial measures. Thus, to overcome the enrichment of HMs in groundwater sources, sustainable management plans are needed to reduce health risks and ensure health safety.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Metais Pesados/análise , Qualidade da Água , Água Subterrânea/química , Minerais/análise , Medição de Risco , Poluentes Químicos da Água/análise
19.
Chemosphere ; 303(Pt 2): 135131, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35640688

RESUMO

Compound-specific isotope analysis (CSIA) has been increasingly used to understand and quantify the (bio)degradation processes affecting chlorohydrocarbons in aquifer-aquitard systems. In this study, we aimed at investigating through reactive transport simulations if dual element (C, Cl) CSIA in aquifer samples can provide information about the occurring (bio)degradation pathways in the underlying aquitard. To that end, we modeled the continous dissolution of a 1,1,2,2-tetrachloroethane (TeCA) dense nonaqueous phase liquid (DNAPL) source in an aquifer as well as the resulting TeCA groundwater plume formation and diffusion into the underlying aquitard. The (bio)degradation of TeCA in the aquifer-aquitard system was simulated in four scenarios: TeCA biodegradation via dehydrohalogenation to trichloroethene (TCE) and TeCA dichloroelimination to dichloroethene (DCE) in the aquifer as well as in the aquitard. The simulations revealed that dual element (C, Cl) CSIA in the aquifer allows the disentanglement of whether TeCA degradation occurs in the aquifer or the aquitard and which (bio)degradation pathways occur in the aquitard. This demonstrates that chlorohydrocarbon (bio)degradation pathways in aquitards can be identified based on CSIA aquifer measurements only, which is an advantage as aquifers are easier to monitor than aquitards.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Isótopos/análise , Tricloroetileno/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 830: 154566, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304151

RESUMO

Crystalline aquifers are layered systems in which the hydrogeological path of waters extends from highly weathered, shallow and porous rocks to poorly weathered, deep and fissured rocks. This varying hydrogeological setting influences the water chemistry in different ways. The paper aims to reconstruct the water-rock interaction process in these various environments starting from a solid reactant represented by an average granite rock and several waters from the shallow aquifer. Afterwards, the water-rock interaction processes occurring in the deep environment are reconstructed, varying the geochemical conditions (primary reactants, secondary mineral phases allowed to precipitate, fO2 and fCO2), with a special focus on fluoride (F-). The evolution from the F-poor, Ca-HCO3 facies to the F-rich, Na-HCO3 water type of high pH was simulated using reaction path modelling. The obtained results show that the theoretical evolution trends well reproduce both shallow and deep water samples providing detailed information on the behavior of fluoride and other relevant constituents (i.e., Na, K, Ca, Mg, SiO2). The performed model represents a flexible and powerful tool for environmental research, applicable in other areas hosting F-rich groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Fluoretos/análise , Água Subterrânea/química , Dióxido de Silício , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa