Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Cell Physiol ; 239(6): e31271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595042

RESUMO

Type 2 diabetes is linked with increased incidence and severity of osteoarthritis. The purpose of this study was to determine the effect of extracellular glucose within the normal blood glucose and hyperglycemic range on catabolic enzyme production by chondrocytes isolated from osteoarthritic (OA) and macroscopically normal (MN) human cartilage under oxygenated (18.9% oxygen) and hypoxic (1% oxygen) conditions. OA and MN chondrocytes were maintained in 4, 6, 8, or 10 mM glucose for 24 h. Glucose consumption, GLUT1 glucose transporter levels, MMP13 and ADAMTS5 production, and levels of RUNX2, a transcriptional regulator of MMP13, ADAMTS5, and GLUT1, were assessed by enzyme-linked assays, RT-qPCR and/or western blot. Under oxygenated conditions, glucose consumption and GLUT1 protein levels were higher in OA but not MN chondrocytes in 10 mM glucose compared to 4 mM. Both RNA and protein levels of MMP13 and ADAMTS5 were also higher in OA but not MN chondrocytes in 10 mM compared to 4 mM glucose under oxygenated conditions. Expression of RUNX2 was overall lower in MN than OA chondrocytes and there was no consistent effect of extracellular glucose concentration on RUNX2 levels in MN chondrocytes. However, protein (but not RNA) levels of RUNX2 were elevated in OA chondrocytes maintained in 10 mM versus 4 mM glucose under oxygenated conditions. In contrast, neither RUNX2 levels or MMP13 or ADAMTS5 expression were increased in OA chondrocytes maintained in 10 mM compared to 4 mM glucose in hypoxia. Elevated extracellular glucose leads to increased glucose consumption and increased RUNX2 protein levels, promoting production of MMP13 and ADAMTS5 by OA chondrocytes in oxygenated but not hypoxic conditions. These findings suggest that hyperglycaemia may exacerbate chondrocyte-mediated cartilage catabolism in the oxygenated superficial zone of cartilage in vivo in patients with undertreated type 2 diabetes, contributing to increased OA severity.


Assuntos
Proteína ADAMTS5 , Hipóxia Celular , Condrócitos , Glucose , Metaloproteinase 13 da Matriz , Osteoartrite , Humanos , Condrócitos/metabolismo , Condrócitos/patologia , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Glucose/metabolismo , Glucose/farmacologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Idoso , Feminino , Oxigênio/metabolismo , Oxigênio/farmacologia , Masculino , Pessoa de Meia-Idade , Células Cultivadas , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética
2.
Mov Disord ; 39(8): 1386-1396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38725190

RESUMO

BACKGROUND: Paroxysmal movement disorders are common in Glut1 deficiency syndrome (Glut1DS). Not all patients respond to or tolerate ketogenic diets. OBJECTIVES: The objective was to evaluate the effectiveness and safety of triheptanoin in reducing the frequency of disabling movement disorders in patients with Glut1DS not receiving a ketogenic diet. METHODS: UX007G-CL301 was a randomized, double-blind, placebo-controlled, phase 3 crossover study. After a 6-week run-in, eligible patients were randomized 1:1 to the first sequence (triheptanoin/placebo or placebo/triheptanoin) titration plus maintenance, followed by washout and the opposite sequence titration plus maintenance. The placebo (safflower oil) matched the appearance, taste, and smell of triheptanoin. Open-label triheptanoin was administered in the extension. The frequency of disabling paroxysmal movement disorder events per 4 weeks (recorded by diary during maintenance; primary endpoint) was assessed by Wilcoxon rank-sum test. RESULTS: Forty-three patients (children, n = 16; adults, n = 27) were randomized and treated. There was no difference between triheptanoin and placebo in the mean (interquartile range) number of disabling paroxysmal movement disorder events (14.3 [4.7-38.3] vs. 11.8; [3.2-28.7]; Hodges-Lehmann estimated median difference: 1.46; 95% confidence interval, -1.12 to 4.36; P = 0.2684). Treatment-emergent adverse events were mild/moderate in severity and included diarrhea, vomiting, upper abdominal pain, headache, and nausea. Two patients discontinued the study because of non-serious adverse events that were predominantly gastrointestinal. The study was closed early during the open-label extension because of lack of effectiveness. Seven patients continued to receive triheptanoin compassionately. CONCLUSION: There were no significant differences between the triheptanoin and placebo groups in the frequency of disabling movement disorder events during the double-blind maintenance period. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Estudos Cross-Over , Humanos , Feminino , Masculino , Método Duplo-Cego , Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Adulto , Adulto Jovem , Proteínas de Transporte de Monossacarídeos/deficiência , Transtornos dos Movimentos/tratamento farmacológico , Resultado do Tratamento , Triglicerídeos
3.
Mol Biol Rep ; 51(1): 727, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861014

RESUMO

BACKGROUND: The presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor in various testicular cells and spermatozoa suggests a potential role in enhancing spermatogonial and postmeiotic cell development. Moreover, GM-CSF activates the pivotal pathways implicated in sperm motility regulation and glucose metabolism. However, the impact of GM-CSF on testicular biopsies from patients with obstructive azoospermia (OA) remains unexplored. Therefore, this study aimed to investigate the in vitro effects of GM-CSF on the expression of genes related to glucose transporters and signaling pathways, sperm motility, and viability in testicular biopsies. METHODS AND RESULTS: Following testicular sperm extraction from 20 patients diagnosed with OA, each sample was divided into two parts: the experimental samples were incubated with medium containing 2 ng/ml GM-CSF at 37 °C for 60 min, and the control samples were incubated with medium without GM-CSF. Subsequently, the oocytes retrieved from the partner were injected with sperm from the treatment and control groups. The sperm parameters (motility and viability), the expression levels of sperm motility-related genes (PIK3R1, PIK3CA, and AKT1), and the expression levels of sperm energy metabolism-related genes (GLUT1, GLUT3, and GLUT14) were assessed. Furthermore, the fertilization and day 3 embryo development rate and embryo quality were evaluated. Compared with those in the nontreated group, the motility parameters and the mRNA expression levels of PIK3R1, AKT1, and GLUT3 in testicular sperm supplemented with GM-CSF were significantly greater (p < 0.05). However, no significant differences in the mRNA expression of PIK3CA, GLUT1, or GLUT14 were detected. According to the ICSI results, compared with the control group, the GM-CSF treatment group exhibited significantly greater fertilization rates (p = 0.027), Day 3 embryo development rate (p = 0.001), and proportions of good-quality embryos (p = 0.002). CONCLUSIONS: GM-CSF increased the expression of genes related to motility and the energy metabolism pathway and effectively promoted the motility of testis-extracted spermatozoa, consequently yielding positive clinical outcomes.


Assuntos
Azoospermia , Metabolismo Energético , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides , Adulto , Feminino , Humanos , Masculino , Azoospermia/genética , Azoospermia/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/genética , Espermatozoides/efeitos dos fármacos , Testículo/metabolismo , Testículo/efeitos dos fármacos
4.
Acta Pharmacol Sin ; 45(9): 1937-1950, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750075

RESUMO

Chimeric antigen receptor-expressing T (CAR-T) cells induce robust antitumor responses in patients with hematologic malignancies. However, CAR-T cells exhibit only limited efficacy against solid tumors such as hepatocellular carcinoma (HCC), partially due to their limited expansion and persistence. CD8+ T cells, as key components of the adaptive immune response, play a central role in antitumor immunity. Aerobic glycolysis is the main metabolic feature of activated CD8+ T cells. In the tumor microenvironment, however, the uptake of large amounts of glucose by tumor cells and other immunosuppressive cells can impair the activation of T cells. Only when tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment have a glycolytic advantage might the effector function of T cells be activated. Glucose transporter type 1 (GLUT1) and acylglycerol kinase (AGK) can boost glycolytic metabolism and activate the effector function of CD8+ T cells, respectively. In this study, we generated GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK for the treatment of HCC. GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK specifically and effectively lysed GPC3-positive tumor cells in vitro in an antigen-dependent manner. Furthermore, GLUT1 or AGK overexpression protected CAR-T cells from apoptosis during repeated exposures to tumor cells. Compared with second-generation CAR-T cells, GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK exhibited greater CD8+ T-cell persistence in vivo and better antitumor effects in HCC allograft mouse models. Finally, we revealed that GLUT1 or AGK maintained anti-apoptosis ability in CD8+ T cells via activation of the PI3K/Akt pathway. This finding might identify a therapeutic strategy for advanced HCC.


Assuntos
Carcinoma Hepatocelular , Transportador de Glucose Tipo 1 , Glipicanas , Neoplasias Hepáticas , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Animais , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Transportador de Glucose Tipo 1/metabolismo , Humanos , Camundongos , Glipicanas/metabolismo , Glipicanas/imunologia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral , Apoptose
5.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175477

RESUMO

Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Lactato Desidrogenase 5 , Proteínas Facilitadoras de Transporte de Glucose , NAD , Linhagem Celular Tumoral , Glicólise , Trifosfato de Adenosina , Glucose , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia
6.
Int J Cancer ; 151(3): 450-462, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35478458

RESUMO

Early detection and complete resection of oral squamous cell carcinoma (OSCC) are crucial to improving patient survival and prognosis. However, specifically targeted imaging probes for OSCC detection are limited. Our study aimed to synthesize a novel near-infrared fluorescence (NIRF) probe for precision detection and fluorescence image-guided surgery in OSCC. Bioinformatics data indicated that glucose transporter 1 (GLUT1) is highly expressed in patients with OSCC. We demonstrated high and specific GLUT1 expression upon immunohistochemical staining of samples from 20 patients with OSCC. The specific expression of GLUT1 was further validated in both human OSCC cell lines and OSCC tumor xenografts. Based on these findings, the GLUT1 inhibitor WZB117 was utilized to synthesize a novel NIRF imaging probe, WZB117-IR820. The fluorescence molecular imaging data revealed that WZB117-IR820 could specifically bind to the tumor areas in an orthotopic OSCC mouse model after intravenous injection and could be further applied for precision fluorescence image-guided surgery with no residual tumor in the orthotopic CAL27-fLUC mouse tumor model. For further clinical translational application in patients with OSCC, precise delineation of OSCC tumor areas was achieved after topical application of the WZB117-IR820 imaging probe and was validated by histopathological and immunohistochemical analyses. In conclusion, we synthesized a novel fluorescent imaging probe, WZB117-IR820, which has potential clinical applications for early detection and fluorescence image-guided surgery in OSCC with no observable toxicity.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Cirurgia Assistida por Computador , Animais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Transportador de Glucose Tipo 1 , Humanos , Camundongos , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/patologia , Neoplasias Bucais/cirurgia , Carcinoma de Células Escamosas de Cabeça e Pescoço
7.
Biol Pharm Bull ; 44(7): 1014-1018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193683

RESUMO

Angiotensin III (Ang III) is a heptapeptide derived from Ang II that has been confirmed as the preferred agonist of angiotensin II type 2 receptor (AT2R). Recent studies have revealed AT2R mainly exerts anti-inflammation effects. However, the effects of the Ang III/AT2R pathway on adipocytes remain unknown. Here, the effects of Ang III on glucose uptake were examined. The results showed that AT2R expression was upregulated during adipogenesis in 3T3-L1 preadipocytes, whereas AT1R expression was diminished. Also, Ang III (10 nM) significantly increased glucose uptake by 3T3-L1 adipocytes, which was blocked by PD123319, an AT2R blocker, but not by irbesartan, an AT1R blocker. Ang III also induced the expression of glucose transporter type 1 (GLUT1). These stimulatory effects were inhibited by pretreatment with PD123319, but not with irbesartan. Together, these results indicate that Ang III enhances glucose uptake by upregulating GLUT1 expression via AT2R.


Assuntos
Adipócitos/metabolismo , Angiotensina III/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Células 3T3-L1 , Animais , Desoxiglucose/farmacologia , Transportador de Glucose Tipo 1/genética , Camundongos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Transdução de Sinais
8.
Epilepsy Behav ; 112: 107361, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33181904

RESUMO

The ketogenic diet (KD) is an established, nonpharmacological treatment for drug-resistant epilepsy (DRE). Actually, KD and its variants have been shown to be elective and resolute for patients with glucose transporter type 1 (GLUT1) deficiency. The aim of this review was to study the use of KD and its variants in infancy, including the neonatal age, and demonstrate the safety and efficacy of this treatment in patients with the age of 0-23 months affected by DRE already subjected to pharmacological approach attempts. A literature search was conducted using PubMed as the medical database source. We used the age limit of 0-23 months, and we considered only articles published between the years 2015 and 2018, in light of increasing interest worldwide in the use of KD and its variants to manage DRE. We included 52 publications: 1 Cochrane study, 22 retrospective studies, 9 prospective studies, 4 randomized controlled trials (RCTs), 12 clinical cases, and 4 clinical reviews. Literature data showed that KD and its variants are safe and useful in patients with the age of 0-23 months with DRE. Classical KD is of first choice in the treatment of GLUT1 deficiency. Earlier introduction of KD in GLUT1 promises a better outcome and a decrease in seizure frequency in these patients.


Assuntos
Dieta Cetogênica/métodos , Epilepsia Resistente a Medicamentos/dietoterapia , Epilepsia/dietoterapia , Dieta Cetogênica/efeitos adversos , Gerenciamento Clínico , Feminino , Transportador de Glucose Tipo 1 , Humanos , Lactente , Recém-Nascido , Masculino , Convulsões/etiologia , Resultado do Tratamento
9.
Zhonghua Bing Li Xue Za Zhi ; 49(9): 897-903, 2020 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-32892554

RESUMO

Objective: To investigate the expression of microRNA-140-5p (miR-140-5p) in esophageal squamous cell carcinoma (ESCC) and its role in cell proliferation and invasion of ESCC. Methods: Real-time quantitative PCR (qPCR) was used to detect the expression levels of miR-140-5p in ESCC tissues and cells. Negative control and miR-140-5p mimic were transfected into Eca109 and KYSE70 cells. CCK-8 kit and Transwell assay were employed to examine the changes of cell proliferation and invasion ability after transfection, respectively. The dual-luciferase reporter assay was used to assess the interaction of miR-140-5p with Glut1. Western blot was utilized to detect the Glut1 protein expression after transfection. Results: Analysis of the related GEO datasets revealed that the expression of miR-140-5p in ESCC tissues was significantly lower than that in normal tissues (P<0.01). The qPCR testing demonstrated that the expression of miR-140-5p in ESCC tissues and cells was markedly lower than that in normal tissues and normal esophageal epithelial cell Het-1A (P<0.01). The miR-140-5p expression was closely associated with tumor differentiation, TNM staging and lymph node metastasis in ESCC patients. The survival rate of ESCC patients with high miR-140-5p level was higher than those with low miR-140-5p level (P<0.05). Besides, addition of miR-140-5p mimic significantly upregulated the expression of miR-140-5p in Eca109 and KYSE70 cells, and suppressed cell proliferation and invasion in Eca109 and KYSE70 cells. The dual-luciferase reporter assay showed that Glut1 was a direct target of miR-140-5p in ESCC cells, and its expression was upregulated in ESCC tissues. Glut1 expression was inversely associated with miR-140-5p expression in ESCC tissues. MiR-140-5p mimic dramatically inhibited the expression of Glut1 in Eca109 and KYSE70 cells. Conclusions: MiR-140-5p plays an essential role in ESCC development and progression. Targeting at miR-140-5p/Glut1 may be a novel therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1 , Humanos , Invasividade Neoplásica
10.
Circ Res ; 118(7): 1062-77, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926469

RESUMO

RATIONALE: Inflamed atherosclerotic plaques can be visualized by noninvasive positron emission and computed tomographic imaging with (18)F-fluorodeoxyglucose, a glucose analog, but the underlying mechanisms are poorly understood. OBJECTIVE: Here, we directly investigated the role of Glut1-mediated glucose uptake in apolipoprotein E-deficient (ApoE(-/-)) mouse model of atherosclerosis. METHODS AND RESULTS: We first showed that the enhanced glycolytic flux in atheromatous plaques of ApoE(-/-) mice was associated with the enhanced metabolic activity of hematopoietic stem and multipotential progenitor cells and higher Glut1 expression in these cells. Mechanistically, the regulation of Glut1 in ApoE(-/-) hematopoietic stem and multipotential progenitor cells was not because of alterations in hypoxia-inducible factor 1α signaling or the oxygenation status of the bone marrow but was the consequence of the activation of the common ß subunit of the granulocyte-macrophage colony-stimulating factor/interleukin-3 receptor driving glycolytic substrate utilization by mitochondria. By transplanting bone marrow from WT, Glut1(+/-), ApoE(-/-), and ApoE(-/-)Glut1(+/-) mice into hypercholesterolemic ApoE-deficient mice, we found that Glut1 deficiency reversed ApoE(-/-) hematopoietic stem and multipotential progenitor cell proliferation and expansion, which prevented the myelopoiesis and accelerated atherosclerosis of ApoE(-/-) mice transplanted with ApoE(-/-) bone marrow and resulted in reduced glucose uptake in the spleen and aortic arch of these mice. CONCLUSIONS: We identified that Glut1 connects the enhanced glucose uptake in atheromatous plaques of ApoE(-/-) mice with their myelopoiesis through regulation of hematopoietic stem and multipotential progenitor cell maintenance and myelomonocytic fate and suggests Glut1 as potential drug target for atherosclerosis.


Assuntos
Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hipercolesterolemia/metabolismo , Mielopoese/fisiologia , Placa Aterosclerótica/metabolismo , Animais , Aorta Torácica/metabolismo , Apolipoproteínas E/deficiência , Transplante de Medula Óssea , Divisão Celular , Subunidade beta Comum dos Receptores de Citocinas/fisiologia , Progressão da Doença , Metabolismo Energético , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/deficiência , Glicólise , Hipercolesterolemia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Interleucina-3/antagonistas & inibidores , Receptores de Interleucina-3/fisiologia , Baço/metabolismo , Tirfostinas/farmacologia
11.
J Pharmacol Sci ; 138(4): 240-246, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30503674

RESUMO

Cerebral ischemic stress increases cerebral sodium-glucose transporter type 1 (SGLT-1). However, the mechanism by which cerebral ischemia leads to the up-regulation of SGLT-1 remains unclear. In peripheral tissue, the activation of mitogen-activated protein kinases (MAPKs) increases SGLT-1. MAPK pathways [c-Jun N-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated protein kinase (ERK)] are activated by cerebral ischemic stress. Therefore, we confirmed the involvement of MAPKs in the up-regulation of cerebral SGLT-1 after cerebral ischemia. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO). Protein expression was assessed by western blotting. Mice received an intracerebroventricular (i.c.v.) injection of SP600125 (JNK inhibitor), SB203580 (p38 inhibitor), and PD98059 (MEK inhibitor) immediately after reperfusion. The infarction and behavioral abnormalities were assessed on days 1 and 3 after MCAO. The MAPK inhibitors suppressed the activation of JNK, p38, and ERK 3 h after MCAO. SP600125 and SB203580 administration ameliorated cerebral ischemic neuronal damage, whereas PD98059 administration exacerbated cerebral ischemic neuronal damage. SP600125 and SB203580 significantly suppressed the increase in SGLT-1 12 h after MCAO. PD98059 had no effect on SGLT-1 expression after MCAO. Our results indicate that the activation of JNK and p38 participate in the up-regulation of cerebral SGLT-1 after MCAO.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Neurônios/patologia , Regulação para Cima
12.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303961

RESUMO

Monogenic and polygenic mutations are important contributors in patients suffering from epilepsy, including metabolic epilepsies which are inborn errors of metabolism with a good respond to specific dietetic treatments. Heterozygous variation in solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) and mutations of the GLUT1/SLC2A2 gene results in the failure of glucose transport, which is related with a glucose type-1 transporter (GLUT1) deficiency syndrome (GLUT1DS). GLUT1 deficiency syndrome is a treatable disorder of glucose transport into the brain caused by a variety of mutations in the SLC2A1 gene which are the cause of different neurological disorders also with different types of epilepsy and related clinical phenotypes. Since patients continue to experience seizures due to a pharmacoresistance, an early clinical diagnosis associated with specific genetic testing in SLC2A1 pathogenic variants in clinical phenotypes could predict pure drug response and might improve safety and efficacy of treatment with the initiation of an alternative energy source including ketogenic or analog diets in such patients providing individualized strategy approaches.


Assuntos
Epilepsia/tratamento farmacológico , Testes Genéticos/métodos , Transportador de Glucose Tipo 1/genética , Medicina de Precisão/métodos , Anticonvulsivantes/uso terapêutico , Epilepsia/diagnóstico , Epilepsia/genética , Transportador de Glucose Tipo 1/deficiência , Humanos , Farmacogenética/métodos
13.
Zhonghua Bing Li Xue Za Zhi ; 46(2): 93-97, 2017 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-28173667

RESUMO

Objective: To investigate the expression and clinicopathological significance of hypoxia-inducible factor 1 alpha (HIF-1α), glucose transporter 1(GLUT-1) and lactate dehydrogenase(LDH)-5 in colorectal cancer. Methods: The expression levels of HIF-1α, GLUT-1 and LDH-5 were detected by immunohistochemical staining in 142 specimens of human carcinoma in comparison with adjacent normal tissues. Results: The expression levels of HIF-1α(78.2%, 111/142), GLUT-1(75.4%, 107/142) and LDH-5(68.3%, 97/142) were higher in tumor tissues than in adjacent normal tissues(14.8%, 21/142; 11.3%, 16/142; 7.0%, 10/142; P<0.01 for all three proteins), and such over-expression was significantly associated with lymphovascular invasion, tumor grade and pathological stages(all P<0.01). Additional studies showed that HIF-1α, GLUT-1 and LDH-5 were positively associated with each other(r<0.3, P<0.05 for all three proteins). Conclusion: The data suggest that HIF-1α, GLUT-1 and LDH-5 expression may serve as prognostic indicators for colorectal cancer patients.


Assuntos
Neoplasias Colorretais/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Proteínas de Neoplasias/metabolismo , Humanos , Imuno-Histoquímica , Isoenzimas/metabolismo , Lactato Desidrogenase 5 , Prognóstico
14.
BMC Med Imaging ; 16: 31, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27112922

RESUMO

BACKGROUND: We report two cases of anisakiasis lesions that were initially suspected to be recurrence of gynecological cancer by positron emission tomography-computed tomography (PET-CT). Both cases were extragastrointestinal anisakiasis that is very rare. CASE PRESENTATION: The first case was a patient with endometrial cancer. At 19 months after surgery, a new low density area of 2 cm in diameter in liver segment 4 was found on follow-up CT. In PET-CT, the lesion had abnormal (18)fluoro-deoxyglucose (FDG) uptake with elevation in the delayed phase, with no other site showing FDG uptake. Partial liver resection was performed. A pathological examination revealed no evidence of malignancy, but showed necrotic granuloma with severe eosinophil infiltration and an irregular material with a lumen structure in the center. Parasitosis was suspected and consultation with the National Institute of Infectious Diseases (NIID) showed the larvae to be Anisakis simplex sensu stricto by genetic examination. The second case was a patient with low-grade endometrial stromal sarcoma (LG-ESS). At 8 months after surgery, swelling of the mediastinal lymph nodes was detected on CT and peripheral T-cell lymphoma was diagnosed by biopsy. A new peritoneal lesion with abnormal FDG uptake was detected on pre-treatment PET-CT and this lesion was increased in size on post-treatment PET-CT. Tumorectomy was performed based on suspected dissemination of LG-ESS recurrence. The findings in a pathological examination were similar to the first case and we again consulted the NIID. The larvae was identified as Anisakis pegreffi, which is a rare pathogen in humans. Having experienced these rare cases, we investigated the mechanisms of FDG uptake in parasitosis lesions by immunohistochemical staining using antibodies to glucose transporter type 1 (GLUT-1) and hexokinase type 2 (HK-2). While infiltrated eosinophils were negative, macrophages demonstrated positive for both antibodies. Therefore, mechanisms behind FDG uptake may involve macrophages, which is common among various granulomas. This is the first report to investigate parasitosis in such a way. CONCLUSION: These cases suggest that anisakiasis is a potential differential diagnosis for a lesion with FDG uptake in PET-CT, and that it is difficult to distinguish this disease from a recurrent tumor using PET-CT alone.


Assuntos
Anisaquíase/diagnóstico , Fígado/parasitologia , Linfonodos/parasitologia , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Diagnóstico Diferencial , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/terapia , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Pessoa de Meia-Idade , Imagem Multimodal , Recidiva Local de Neoplasia/diagnóstico , Compostos Radiofarmacêuticos/metabolismo , Sarcoma do Estroma Endometrial/patologia , Sarcoma do Estroma Endometrial/terapia
15.
Pract Neurol ; 16(1): 50-2, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26336901

RESUMO

For some time, paediatric neurologists have recognised glucose transporter type 1 (GluT1) deficiency syndrome as a cause of intractable infantile seizures, microcephaly, developmental delay and hypoglycorrhachia in the presence of a normal plasma glucose. It is caused by mutations in the SLC2A1 gene, coding for GluT1, leading to a reduction in the available glucose transporter sites; it responds to the ketogenic diet. Recently, a wider spectrum of seizure syndromes have been associated with functional impairment of glucose transport caused by SLC2A1 mutations. These syndromes include 12% of early-onset absence epilepsy and 1% of genetic generalised epilepsies, where they represent a risk allele contributing to polygenic inheritance. We describe a young man with early-onset absence seizures and paroxysmal exercise-induced dyskinesia. While this syndrome is uncommon, it is recognisable and its diagnosis allows consideration of treatment with the ketogenic diet. We discuss the role of genetic testing in early-onset absence seizures and genetic generalised epilepsy.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/complicações , Erros Inatos do Metabolismo dos Carboidratos/genética , Distúrbios Distônicos/etiologia , Epilepsia Tipo Ausência/etiologia , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Humanos , Masculino , Adulto Jovem
16.
Pathol Int ; 64(12): 607-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25376377

RESUMO

The differentiation of malignant mesotheliomas and benign mesothelial proliferations is crucial in determining patient care and prognosis. But, this distinction can be extremely difficult, particularly in small biopsies. Recently, insulin-like growth factor II mRNA-binding protein 3 (IMP3) and glucose transporter 1 (GLUT-1) have been reported as specific and sensitive markers in the distinction of mesotheliomas from benign mesothelial proliferations. The purpose of this study is to evaluate the utility of IMP3, GLUT-1, and epithelial membrane antigen (EMA) immunohistochemistry for distinguishing mesotheliomas from benign mesothelial proliferations. Immunoexpression of IMP3, GLUT-1, and EMA was evaluated in 88 malignant mesotheliomas, 35 adenomatoid tumors, and 20 benign lung tissues with reactive mesothelial cells. The sensitivity for IMP3, GLUT-1, and EMA was 37%, 21%, and 41%, respectively. The specificity for IMP3, GLUT-1, and EMA was 100%. When IMP3, GLUT1, and EMA combined, the sensitivity was 66% for IMP3/EMA staining, 53% for GLUT-1/EMA staining, and 45% for IMP3/GLUT-1. Use of IMP3 and EMA together is more helpful to distinguish malignant mesotheliomas from benign mesothelial proliferations than the use of IMP3 or EMA alone.


Assuntos
Biomarcadores Tumorais/análise , Transportador de Glucose Tipo 1/metabolismo , Mesotelioma/diagnóstico , Mucina-1/biossíntese , Proteínas de Ligação a RNA/metabolismo , Proliferação de Células , Epitélio/patologia , Humanos , Imuno-Histoquímica , Mucina-1/análise , Sensibilidade e Especificidade , Análise Serial de Tecidos
17.
Med Int (Lond) ; 4(6): 57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092009

RESUMO

Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is a rare metabolic encephalopathy with a wide variety of clinical phenotypes. In the present study, 15 patients diagnosed with GLUT1-DS were selected, all of whom had obvious clinical manifestations and complete genetic testing. Their clinical data and genetic reports were collated. All patients were provided with a ketogenic diet (KD) and an improvement in their symptoms was observed during a follow-up period of up to 1 year. The results revealed that the 15 cases had clinical symptoms, such as convulsions or dyskinesia. Although none had a cerebrospinal fluid/glucose ratio <0.4, the genetic report revealed that all had the solute carrier family 2 member 1 gene variant, and their clinical symptoms basically improved following the use of the KD. GLUT1-DS is a genetic metabolic disease that causes a series of neurological symptoms due to glucose metabolism disorders in the brain. Low glucose levels in cerebrospinal fluid and genetic testing are key diagnostic criteria, and the KD is a highly effective treatment option. By summarizing and analyzing patients with GLUT1-DS, summarizing clinical characteristics and expanding their gene profile, the findings of the present study may be of clinical significance for the early recognition and diagnosis of the disease, so as to conduct early treatment and shorten the duration of brain energy deficiency. This is of utmost importance for improving the prognosis and quality of life of affected children.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39037350

RESUMO

The expression of both lactate dehydrogenase A (LDH-A) and glucose transporter type 1 (GLUT1) is high in pancreatic, thoracic and many other types of cancer. GLUT1 is also highly expressed in endothelial cells (EC), that play an important role in tumor metastasis. We investigated the effect of inhibition of LDH-A by NHI-2 and GLUT1 by PGL14 on cellular migration, a hallmark of metastasis, in relation to changes in intracellular purine nucleotide and nicotinamide adenine dinucleotide pools in a human microvascular endothelial cell line (HMEC-1). HMEC-1 were treated with NHI-2 and PGL14 alone or in combination. Cell migration was tested by the wound healing assay. The intracellular purine nucleotides and NAD+/NADH concentrations were measured using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). Both NHI-2 at 15 µM and 45 µM and PGL14 at 10 µM and 30 µM inhibited migration by 5 to 28% while the combination led to 46% inhibition. The drugs also decreased intracellular nucleotide pools, but only 45 µM NHI-2 altered energy charge and redox status in HMEC-1 cells. Inhibitors of glycolysis attenuated migration and the energy charge of EC and support further development of LDH-A and GLUT1 inhibitors to target cancer aggressiveness and metastasis.

19.
World J Clin Cases ; 12(5): 931-941, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38414613

RESUMO

BACKGROUND: There are limited data on the use of glucose transport protein 1 (GLUT-1) expression as a biomarker for predicting lymph node metastasis in patients with colorectal cancer. GLUT-1 and GLUT-3, hexokinase (HK)-II, and hypoxia-induced factor (HIF)-1 expressions may be useful biomarkers for detecting primary tumors and lymph node metastasis when combined with fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography (PET/CT). AIM: To evaluate GLUT-1, GLUT-3, HK-II, and HIF-1 expressions as biomarkers for detecting primary tumors and lymph node metastasis with 18F-FDG-PET/CT. METHODS: This retrospective study included 169 patients with colorectal cancer who underwent colectomy and preoperative 18F-FDG-PET/CT at Chungbuk National University Hospital between January 2009 and May 2012. Two tissue cores from the central and peripheral areas of the tumors were obtained and were examined by a dedicated pathologist, and the expressions of GLUT-1, GLUT-3, HK-II, and HIF-1 were determined using immunohistochemical staining. We analyzed the correlations among their expressions, various clinicopathological factors, and the maximum standardized uptake value (SUVmax) of PET/CT. RESULTS: GLUT-1 was found at the center or periphery of the tumors in 109 (64.5%) of the 169 patients. GLUT-1 positivity was significantly correlated with the SUVmax of the primary tumor and lymph nodes, regardless of the biopsy site (tumor center, P < 0.001 and P = 0.012; tumor periphery, P = 0.030 and P = 0.010, respectively). GLUT-1 positivity and negativity were associated with higher and lower sensitivities of PET/CT, respectively, for the detection of lymph node metastasis, regardless of the biopsy site. GLUT3, HK-II, and HIF-1 expressions were not significantly correlated with the SUVmax of the primary tumor and lymph nodes. CONCLUSION: GLUT-1 expression was significantly correlated with the SUVmax of 18F-FDG-PET/CT for primary tumors and lymph nodes. Clinicians should consider GLUT-1 expression in preoperative endoscopic biopsy in interpreting PET/CT findings.

20.
Diabetes Metab J ; 48(2): 215-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37750184

RESUMO

BACKGRUOUND: Previous studies have reported that oxidative stress contributes to obesity characterized by adipocyte hypertrophy. However, mechanism has not been studied extensively. In the current study, we evaluated role of extracellular vimentin secreted by oxidized low-density lipoprotein (oxLDL) in energy metabolism in adipocytes. METHODS: We treated 3T3-L1-derived adipocytes with oxLDL and measured vimentin which was secreted in the media. We evaluated changes in uptake of glucose and free fatty acid, expression of molecules functioning in energy metabolism, synthesis of adenosine triphosphate (ATP) and lactate, markers for endoplasmic reticulum (ER) stress and autophagy in adipocytes treated with recombinant vimentin. RESULTS: Adipocytes secreted vimentin in response to oxLDL. Microscopic evaluation revealed that vimentin treatment induced increase in adipocyte size and increase in sizes of intracellular lipid droplets with increased intracellular triglyceride. Adipocytes treated with vimentin showed increased uptake of glucose and free fatty acid with increased expression of plasma membrane glucose transporter type 1 (GLUT1), GLUT4, and CD36. Vimentin treatment increased transcription of GLUT1 and hypoxia-inducible factor 1α (Hif-1α) but decreased GLUT4 transcription. Adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), diacylglycerol O-acyltransferase 1 (DGAT1) and 2 were decreased by vimentin treatment. Markers for ER stress were increased and autophagy was impaired in vimentin-treated adipocytes. No change was observed in synthesis of ATP and lactate in the adipocytes treated with vimentin. CONCLUSION: We concluded that extracellular vimentin regulates expression of molecules in energy metabolism and promotes adipocyte hypertrophy. Our results show that vimentin functions in the interplay between oxidative stress and metabolism, suggesting a mechanism by which adipocyte hypertrophy is induced in oxidative stress.


Assuntos
Adipócitos , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Vimentina/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Adipócitos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Hipertrofia/metabolismo , Trifosfato de Adenosina/metabolismo , Lactatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa