Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 294(26): 10194-10210, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31092554

RESUMO

Excitotoxic levels of glutamate represent a physiological stress that is strongly linked to amyotrophic lateral sclerosis (ALS) and other neurological disorders. Emerging evidence indicates a role for neurodegenerative disease-linked RNA-binding proteins (RBPs) in the cellular stress response. However, the relationships between excitotoxicity, RBP function, and disease have not been explored. Here, using primary cortical and motor neurons, we found that excitotoxicity induced the translocation of select ALS-linked RBPs from the nucleus to the cytoplasm within neurons. RBPs affected by excitotoxicity included TAR DNA-binding protein 43 (TDP-43) and, most robustly, fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS). We noted that FUS is translocated through a calcium-dependent mechanism and that its translocation coincides with striking alterations in nucleocytoplasmic transport. Furthermore, glutamate-induced up-regulation of glutamate ionotropic receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type subunit 2 (GRIA2) in neurons depended on FUS expression, consistent with a functional role for FUS in excitotoxic stress. These findings reveal molecular links among prominent factors in neurodegenerative diseases, namely excitotoxicity, disease-associated RBPs, and nucleocytoplasmic transport.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Ácido Glutâmico/efeitos adversos , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Receptores de AMPA/metabolismo , Estresse Fisiológico , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica , Citoplasma , Demência Frontotemporal , Humanos , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteína FUS de Ligação a RNA/genética , Receptores de AMPA/genética
2.
Biochem Biophys Res Commun ; 521(3): 775-778, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706572

RESUMO

Metabotropic Glutamate Receptors (mGluRs) are Class C G-protein coupled receptors (GPCRs) that are expressed throughout the central nervous system and are involved in several neurological and psychiatric disorders. Although, many studies focused on Glutamate induced activation of mGluR2, however, the role of unstructured loop (or "BC loop") in activation of metabotropic Glutamate receptors is currently unknown. Here, using Förster Resonance Energy Transfer (FRET) based assay in live cells we show that unstructured loop is required for Glutamate induced conformation and hence the activation of the receptor.


Assuntos
Ácido Glutâmico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Conformação Proteica , Receptores de Glutamato Metabotrópico/química
3.
Bioorg Med Chem Lett ; 30(23): 127555, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941990

RESUMO

Selective metabotropic glutamate receptor 2 (mGluR2) inhibitors have been demonstrated to show therapeutic effects by improving alleviating symptoms of schizophrenic patients in clinical studies. Herein we report the synthesis and preliminary evaluation of a 11C-labeled positron emission tomography (PET) tracer originating from a mGluR2 inhibitor, 3-(cyclopropylmethyl)-7-((4-(4-methoxyphenyl)piperidin-1-yl)methyl)-8-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (CMTP, 1a). [11C]CMTP ([11C]1a) was synthesized by O-[11C]methylation of desmethyl precursor 1b with [11C]methyl iodide in 19.7 ± 8.9% (n = 10) radiochemical yield (based on [11C]CO2) with >98% radiochemical purity and >74 GBq/µmol molar activity. Autoradiography study showed that [11C]1a possessed moderate in vitro specific binding to mGluR2 in the rat brain, with a heterogeneous distribution of radioactive accumulation in the mGluR2-rich brain tissue sections, such as the cerebral cortex and striatum. PET study indicated that [11C]1a was able to cross the blood-brain barrier and enter the brain, but had very low specific binding in the rat brain. Further optimization for the chemical structure of 1a is necessary to increase binding affinity to mGluR2 and then improve in vivo specific binding in brain.


Assuntos
Meios de Contraste/farmacologia , Piridinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Triazóis/farmacologia , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Meios de Contraste/síntese química , Meios de Contraste/metabolismo , Masculino , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Piridinas/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Ratos Sprague-Dawley , Triazóis/síntese química , Triazóis/metabolismo
4.
Bioorg Med Chem Lett ; 30(9): 127066, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32173198

RESUMO

Antagonism of the mGluR2 receptor has the potential to provide therapeutic benefit to cognitive disorders by elevating synaptic glutamate, the primary excitatory neurotransmitter in the brain. Selective antagonism of the mGluR2 receptor, however, has so far been elusive, given the very high homology of this receptor with mGluR3, particularly at the orthosteric binding site. Given that inhibition of mGluR3 has been implicated in undesired effects, we sought to identify selective mGluR2 negative allosteric modulators. Herein we describe the discovery of the highly potent and selective class of mGluR2 negative allosteric modulators, 4-arylquinoline-2-carboxamides, following a successful HTS campaign and medicinal chemistry optimization, showing potent in vivo efficacy in rodent.


Assuntos
Descoberta de Drogas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Adjuvantes Anestésicos/toxicidade , Aminoácidos/farmacologia , Anfetaminas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ácido Glutâmico/metabolismo , Ensaios de Triagem em Larga Escala , Camundongos , Estrutura Molecular , Escopolamina/toxicidade , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 27(3): 483-491, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611634

RESUMO

Metabotropic glutamate receptor 2 (mGluR2) has been suggested as a therapeutic target for treating schizophrenia-like symptoms arising from increased glutamate transmission in the human forebrain. However, no reliable positron emission tomography (PET) radiotracer allowing for in vivo visualization of mGluR2 in the human brain is currently available. In this study, we synthesized 4-(2-fluoro-4-[11C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)picolinamide ([11C]1) and evaluated its potential as a PET tracer for imaging mGluR2 in the rodent brain. Compound 1, a negative allosteric modulator (NAM) of mGluR2, showed high in vitro binding affinity (IC50: 26 nM) for mGluR2 overexpressed in human cells. [11C]1 was synthesized by O-[11C]methylation of the phenol precursor 2 with [11C]methyl iodide. After the reaction, HPLC purification and formulation, [11C]1 of 7.4 ±â€¯2.8 GBq (n = 8) was obtained from [11C]carbon dioxide of 22.5 ±â€¯4.8 GBq (n = 8) with >99% radiochemical purity and 70 ±â€¯32 GBq/µmol (n = 8) molar activity at the end of synthesis. In vitro autoradiography for rat brains showed that [11C]1 binding was heterogeneously distributed in the cerebral cortex, striatum, hippocampus, and cerebellum. This pattern is consistent with the regional distribution pattern of mGluR2 in the rodent brain. The radioactivity was significantly reduced by self- or MNI-137 (a mGluR2 NAM) blocking. Small-animal PET studies indicated a low in vivo specific binding of [11C]1 in the rat brain. The brain uptake was increased in a P-glycoprotein and breast cancer resistant protein double knockout mouse, when compared to a wild-type mouse. While [11C]1 presented limited potential as an in vivo PET tracer for mGluR2, we suggested that it can be used as a lead compound for developing new radiotracers with improved in vivo brain properties.


Assuntos
Encéfalo/diagnóstico por imagem , Ácidos Picolínicos/química , Tomografia por Emissão de Pósitrons , Receptores de Glutamato Metabotrópico/análise , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacocinética , Traçadores Radioativos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual
6.
Acta Neurol Scand ; 139(6): 540-545, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30908586

RESUMO

AIMS: The association of single nucleotide polymorphisms (SNPs) of glutamate receptor 2 (GRIK2) gene, as well as gene-gene interaction with the risk of early-onset epilepsy susceptibility, was studied in Chinese children. METHODS: Generalized multi-factor dimension reduction (GMDR) is used to identify the optimal linkage between interaction among four SNPs and early-onset epilepsy susceptibility. Logistic regression was performed to assess association between four SNPs within GRIK2 gene and the risk of epilepsy. RESULTS: The results show that the risk of epilepsy in the rs4840200-T allele carriers was significantly higher than CC (CT/TT vs CC), adjusted OR (95% CI) = 1.74 (1.31-2.20), and the carrier of rs3213607-A allele was also higher than CC (CG/GG vs CC) with adjusted OR (95% CI) = 1.61 (1.23-2.10). We did not detect significant association between rs9390754 and rs2235076 within GRIK2 gene and epilepsy risk. In the GMDR analysis for the gene/gene interaction (2-4 locus models), we found a significant two-locus model (P = 0.001) involving rs4840200 and rs9390754. The cross-validation consistency was 10/10, and the prediction error was 0.632. Participants with rs4840200-CT/TT and rs9390754-GA/AA genotype within GRIK2 gene have the highest epilepsy risk, compared to participants with rs4840200-CC and rs9390754-GG genotype within GRIK2 gene, OR (95% CI) = 2.42 (1.78-3.11), after covariates adjustment for age and gender. CONCLUSIONS: Both rs4840200-T and rs3213607-A, and the interactions between rs4840200 and rs9390754 are related to the increased risk of epilepsy risk.


Assuntos
Epilepsia/genética , Predisposição Genética para Doença/genética , Receptores de Ácido Caínico/genética , Povo Asiático/genética , Criança , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Polimorfismo de Nucleotídeo Único , Receptor de GluK2 Cainato
7.
Acta Pharmacol Sin ; 40(4): 460-467, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29946167

RESUMO

Metabotropic glutamate receptor 2 (mGlu2) belongs to the group-II metabotropic glutamate (mGlu) receptors and is a neurotransmitter G protein-coupled receptor. The group-II mGlu receptors are promising antipsychotic targets, but the specific role of mGlu2 signaling remains unclear. Receptor tyrosine kinases (RTKs) are also believed to participate in brain pathogenesis. To investigate whether there is any communication between mGlu2 and RTKs, we generated a CHO-mGlu2 cell line that stably expresses mGlu2 and showed that activation of mGlu2 by LY379268, a group II mGlu agonist, was able to transactivate insulin-like growth factor 1 receptor (IGF-1R). We further determined that the Gi/o protein, Gßγ subunits, phospholipase C, and focal adhesion kinase (FAK) were involved in the IGF-1R transactivation signaling axis, which further induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and cAMP response element-binding protein. In primary mouse cortical neurons, similar signaling pathways were observed when mGlu2 were stimulated by LY487379, an mGlu2 positive allosteric modulator. Transactivation of IGF-1R through FAK in response to mGlu2 should provide a better understanding of the association of mGlu2 with brain disease.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células CHO , Células Cultivadas , Cricetulus , Humanos , Camundongos , Fosforilação , Receptores de Glutamato Metabotrópico/agonistas
8.
Biol Pharm Bull ; 41(12): 1866-1869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30504687

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immunosuppressive myeloid cells found in patients with cancer and in mouse tumor models. They suppress anti-tumor immunity, resulting in the promotion of tumor growth. The relationship between nutrition and cancer has recently been reported by several research groups. Tumor cells rely on glutaminolysis, in which glutamine is metabolized into glutamate for energy production, and hence, glutamate levels are elevated in tumor-bearing hosts. However, the mechanism of regulation of tumor progression by glutamate still remains unclear. In this study, we found that the metabotropic glutamate receptor (mGluR) 2/3 was expressed on MDSCs, and an mGluR2/3 antagonist LY341495 attenuated the immunosuppressive activity of MDSCs. Furthermore, we observed that LY341495 treatment inhibited B16-F10 melanoma growth in vivo. Taken together, our data suggest that glutamate signaling promotes tumor growth by increasing the potency of immune suppression.


Assuntos
Aminoácidos/farmacologia , Melanoma Experimental/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Xantenos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/metabolismo
9.
Bioorg Med Chem Lett ; 27(14): 3139-3143, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571823

RESUMO

The purpose of this study was to develop three new radiotracers, 1-(cyclopropylmethyl)-4-([11C/18F]substituted-phenyl)piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile ([11C]1, [11C]2, and [18F]4), and to examine their specific bindings with metabotropic glutamate receptor subtype 2 (mGluR2) in rat brain sections by using in vitro autoradiography. These compounds were found to possess potent in vitro binding affinities (Ki: 8.0-34.1nM) for mGluR2 in rat brain homogenate. [11C]1, [11C]2, and [18F]4 were synthesized by [11C/18F]alkylation of the corresponding phenol precursors with [11C]methyl iodide or [18F]fluoroethyl bromide with >98% radiochemical purity and 80-130GBq/µmol specific activity at the end of synthesis. In vitro autoradiography indicated that these radiotracers showed heterogeneous specific bindings in mGluR2-rich brain regions, such as the cerebral cortex, striatum, hippocampus, and granular layer of the cerebellum.


Assuntos
Encéfalo/metabolismo , Compostos Radiofarmacêuticos/síntese química , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/química , Radioisótopos de Flúor/química , Marcação por Isótopo , Cinética , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos/química , Ratos , Razão Sinal-Ruído
10.
Bioorg Med Chem ; 25(3): 1014-1021, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049619

RESUMO

Brain metabotropic glutamate receptor 2 (mGluR2) has been proposed as a therapeutic target for the treatment of schizophrenia-like symptoms arising from increased glutamate transmission in the forebrain. However, there does not exist a reliable tool for the study of mGluR2 in human neuroimaging. The purpose of this study was to radiosynthesize 1-(cyclopropylmethyl)-4-(4-[11C]methoxyphenyl)piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile ([11C]CMDC) and evaluate its potential as a positron emission tomography (PET) radiotracer for imaging mGluR2 in the rat brain. CMDC, a positive allosteric modulator of mGluR2, showed potent functional activity (EC50: 98nM) for human mGluR2 in vitro. [11C]CMDC was synthesized by O-[11C]methylation of 1-(cyclopropylmethyl)-4-(4-hydroxyphenyl)piperidin-1-yl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1) with [11C]methyl iodide. [11C]CMDC (2.2±0.9GBq; n=20) was obtained from [11C]CO2 of 14.0-17.8GBq with >98% radiochemical purity and 86-150GBq/µmol specific activity at the end of synthesis. In vitro autoradiography indicated that [11C]CMDC binding was expressed (>50% of total binding) in mGluR2-rich brain regions including the cerebral cortex, striatum and hippocampus. However, small-animal PET showed low in vivo specific binding of [11C]CMDC in the rat brain. While [11C]CMDC has limited potential as a PET tracer for brain mGluR2, it can be used to develop new radiotracers with improved behaviors.


Assuntos
Di-Hidropiridinas/química , Piperidinas/química , Tomografia por Emissão de Pósitrons , Receptores de Glutamato Metabotrópico/análise , Animais , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/farmacocinética , Traçadores Radioativos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
11.
Biol Pharm Bull ; 40(7): 1121-1124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674256

RESUMO

Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.


Assuntos
Encéfalo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Receptores de AMPA/metabolismo , Compostos de Trialquitina/toxicidade , Animais , Peso Corporal , Encéfalo/metabolismo , Comportamento Alimentar , Feminino , Camundongos , Gravidez
12.
Int J Mol Sci ; 18(7)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678159

RESUMO

Docking and molecular dynamics simulations have been carried out to investigate the interaction of a traditional Chinese medicine, WenQingYin, with the glutamate receptor 2 (GluR2) subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Four representative drug components of WenQingYin, namely 2-(3,4-dihydroxyphenyl)-5,6,7-trihydroxy-4H-chromen-4-one (PHF), 4-hydroxy-3-methoxybenzoic acid (HMB), 4-(2,3-dihydroxy-3-methylbutoxy)-7H-furo[3,2-g]chromen-7-one (DHMBP) and methyl 7-formylcyclopenta[c]pyran-4-carboxylate (cerbinal), and their complexes with GluR2 were simulated. Our results show that PHF, HMB, and DHMBP formed a partial hydrogen bond with GluR2 in its ligand-binding domain. However, cerbinal was not stable in the ligand-binding domain of GluR2 and induced a significant change in the structure of GluR2. Three-dimensional plots represent the contact and movement situation of the traditional Chinese medicine molecules in the ligand-binding domain. The combined results of the docking and molecular dynamics simulations provide insight into the interaction between these traditional Chinese medicine molecules and proteins.


Assuntos
Medicamentos de Ervas Chinesas/química , Modelos Moleculares , Conformação Molecular , Receptores de AMPA/química , Sítios de Ligação , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Receptores de AMPA/metabolismo
13.
Bioorg Med Chem Lett ; 24(12): 2693-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24794112

RESUMO

Herein we report the design and synthesis of a series of substituted pyrazolo[1,5-a]quinazolin-5(4H)-ones as negative allosteric modulators of metabotropic glutamate receptors 2 and 3 (mGlu2 and mGlu3, respectively). Development of this series was initiated by reports that pyrazolo[1,5-a]quinazoline-derived scaffolds can yield compounds with activity at group II mGlu receptors which are prone to molecular switching following small structural changes. Several potent analogues, including 4-methyl-2-phenyl-8-(pyrimidin-5-yl)pyrazolo[1,5-a]quinazolin-5(4H)-one (10b), were discovered with potent in vitro activity as dual mGlu2/mGlu3 NAMs, with excellent selectivity versus the other mGluRs.


Assuntos
Pirazóis/síntese química , Quinazolinas/síntese química , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica , Desenho de Fármacos , Concentração Inibidora 50 , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Receptores de Glutamato Metabotrópico/química , Relação Estrutura-Atividade
14.
Comput Biol Med ; 179: 108898, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047503

RESUMO

Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target. In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes. Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.


Assuntos
Canabidiol , Epilepsia , Ácido Glutâmico , Simulação de Acoplamento Molecular , Transdução de Sinais , Canabidiol/farmacologia , Canabidiol/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/genética , Humanos , Transdução de Sinais/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia
15.
J Neurotrauma ; 41(5-6): 714-733, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917117

RESUMO

Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.


Assuntos
Traumatismos por Explosões , Receptores de Glutamato Metabotrópico , Transtornos de Estresse Pós-Traumáticos , Masculino , Animais , Ratos , Ansiedade , Traumatismos por Explosões/complicações , Tonsila do Cerebelo
16.
Synapse ; 67(11): 794-800, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23766023

RESUMO

Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT(2A)R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT(2A)R mRNA was seen. The effects were dose-dependent with half-maximal effective concentrations (EC(50)) around 1 ng/ml. After 24 h of incubation with BDNF, CRF-R1 mRNA levels had returned to baseline levels, whereas mGluR2 mRNA levels remained low. A significant reduction of all three receptor transcripts was observed after neuronal depolarization produced by high potassium. This study emphasizes the role of BDNF as an important regulator of receptor compositions in the synapse and provides further evidence that BDNF directly regulates important drug targets involved in cognition and mood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Genes Precoces , Potenciais da Membrana , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Glutamato Metabotrópico/genética , Sinapses/metabolismo , Transcrição Gênica
17.
J Cereb Blood Flow Metab ; 43(2): 296-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36172629

RESUMO

Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001). Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.


Assuntos
Receptores de Glutamato Metabotrópico , Ratos , Cricetinae , Animais , Ratos Sprague-Dawley , Cricetulus , Tomografia por Emissão de Pósitrons
18.
Theranostics ; 10(24): 11178-11196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042277

RESUMO

Selective modulation of metabotropic glutamate receptor 2 (mGlu2) represents a novel therapeutic approach for treating brain disorders, including schizophrenia, depression, Parkinson's disease (PD), Alzheimer's disease (AD), drug abuse and addiction. Imaging mGlu2 using positron emission tomography (PET) would allow for in vivo quantification under physiological and pathological conditions and facilitate drug discovery by enabling target engagement studies. In this paper, we aimed to develop a novel specific radioligand derived from negative allosteric modulators (NAMs) for PET imaging of mGlu2. Methods. A focused small molecule library of mGlu2 NAMs with tetrahydro naphthyridine scaffold was synthesized for pharmacology and physicochemical evaluation. GIRK dose-response assays and CNS panel binding selectivity assays were performed to study the affinity and selectivity of mGlu2 NAMs, among which compounds 14a and 14b were selected as PET ligand candidates. Autoradiography in SD rat brain sections was used to confirm the in vitro binding specificity and selectivity of [11C]14a and [11C]14b towards mGlu2. In vivo binding specificity was then studied by PET imaging. Whole body biodistribution study and radiometabolite analysis were conducted to demonstrate the pharmacokinetic properties of [11C]14b as most promising PET mGlu2 PET ligand. Results. mGlu2 NAMs 14a-14g were synthesized in 14%-20% yields in five steps. NAMs 14a and 14b were selected to be the most promising ligands due to their high affinity in GIRK dose-response assays. [11C]14a and [11C]14b displayed similar heterogeneous distribution by autoradiography, consistent with mGlu2 expression in the brain. While PET imaging study showed good brain permeability for both tracers, compound [11C]14b demonstrated superior binding specificity compared to [11C]14a. Further radiometabolite analysis of [11C]14b showed excellent stability in the brain. Conclusions. Compound 14b exhibited high affinity and excellent subtype selectivity, which was then evaluated by in vitro autoradiography and in vivo PET imaging study after labeling with carbon-11. Ligand [11C]14b, which we named [11C]MG2-1904, demonstrated high brain uptake and excellent in vitro/in vivo specific binding towards mGlu2 with high metabolic stability in the brain. As proof-of-concept, our preliminary work demonstrated a successful example of visualizing mGlu2in vivo derived from NAMs, which represents a promising chemotype for further development and optimization aimed for clinical translation.


Assuntos
Naftiridinas/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Ensaio Radioligante/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Receptores de Glutamato Metabotrópico/análise , Regulação Alostérica , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Ligantes , Masculino , Modelos Animais , Naftiridinas/química , Naftiridinas/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Distribuição Tecidual
19.
Neuropharmacology ; 174: 107866, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785263

RESUMO

The activity of an allosteric agonist of muscarinic M1 receptor, VU0357017, and a positive allosteric modulator (PAM) of M5 receptor, VU0238429, were investigated alone or in combination with the mGlu2 receptor PAM, LY487379 using the following behavioural tests: prepulse inhibition (PPI), novel object recognition (NOR), and spatial delayed alternation (SDA). VU0357017 (10 and 20 mg/kg) and VU0238429 (5 and 10 mg/kg) reversed deficits in PPI while VU0238429 (2.5 and 5 mg/kg) was effective in SDA. The simultaneous administration of subeffective doses of M1 or M5 activators (5, 1, or 0.25 mg/kg) with LY487379 (0.5 mg/kg) induced the same effect as that observed for the active dose of each compound. Selective M1 or M5 receptor blockers antagonized the effect exerted by these combinations, and pharmacokinetic studies confirmed independent transport through the blood-brain barrier. The expression of both receptors (M1 and M5) was established in brain structures involved in cognition (neocortex, hippocampus, and entorhinal cortex) in both the rat and the mouse brains by immunofluorescence staining. Specifically, double neuronal staining of mGlu2-M1 and mGlu2-M5 receptors was observed in many areas of the rat brain, while the number of double-stained mGlu2-M1 receptors was moderate in the mouse brain with no mGlu2-M5 colocalization. Finally, the combined administration of subeffective doses of the compounds did not alter prolactin levels or motor coordination, in contrast to the compounds given alone at the highest dose or in combination with standard neuroleptics.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Maleato de Dizocilpina/toxicidade , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/toxicidade , Masculino , Camundongos , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M5/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Sulfonamidas/farmacologia
20.
Expert Opin Ther Pat ; 29(7): 497-507, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242055

RESUMO

INTRODUCTION: Positive allosteric modulation of mGlu2 has attracted much interest as an alternative approach to classical orthosteric receptor activation. Two mGlu2 PAMS have advanced into the clinic. The results obtained in schizophrenia and MDD phase 2 clinical trials have tempered the high expectations put on selective mGlu2 receptor activation for treating these conditions; nevertheless, the search for novel therapeutic indications and novel chemotypes continues to be an active field of research. AREAS COVERED: 2013-2018 patent literature on mGlu2 receptor PAMs. EXPERT OPINION: After a decade of intensive research, the mGlu2 PAM field has seen a deceleration in the last five years. Negative phase 2 schizophrenia clinical trials with JNJ-40411813 and AZD8529 seem to have tempered the high expectations of the scientific community on the utility of mGlu2 PAMs for the treatment of schizophrenia. Nevertheless, novel therapeutic indications continue to be explored and AZD8529 is currently in a phase 2 study for smoking cessation. The advances in medicinal chemistry and in pharmacology, with novel indications such as epilepsy, have set the stage in the field of mGlu2 receptor PAMs. Ongoing preclinical and clinical studies will contribute to define their optimal therapeutic indication and potential to become novel therapeutic agents.


Assuntos
Indóis/uso terapêutico , Oxidiazóis/uso terapêutico , Piperidinas/uso terapêutico , Piridonas/uso terapêutico , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Humanos , Indóis/farmacologia , Oxidiazóis/farmacologia , Patentes como Assunto , Piperidinas/farmacologia , Piridonas/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa