Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Environ Sci Technol ; 58(42): 19016-19026, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39390686

RESUMO

Goethite often harbors impurities, such as phosphorus (P) and aluminum (Al), which are incorporated into its structure through direct substitution or coprecipitation with nanocrystalline phases. Understanding the processes that drive the release of P and Al from goethite is of paramount importance for the iron ore industry and for managing nutrient and pollutant behavior in the environment. This study investigates the impact of Fe(II)-catalyzed recrystallization on the release of P and Al from goethite. We evaluated the solubility and extractability of P and Al in suspensions of Al- and P-coprecipitated goethite, treated with 57Fe-enriched Fe(II)aq under oxygen-free conditions for 30 days at neutral pH and room temperatures. The addition of Fe(II)aq induced the recrystallization of goethite dominant initial synthetic phases (i.e., low P- and Al-containing phases) and the transformation of higher P- and/or Al-bearing starting material that was actually a mixture of goethite and minor amounts of lepidocrocite and feroxyhyte. Our results reveal that Fe(II)-catalyzed mineral and structural evolution led to the repartitioning of P and, to a lesser extent, Al throughout the crystal structure, mineral surface, and aqueous solution. Following a 30 day reaction with Fe(II)aq, we extracted approximately 80, 68.8, 73.9, and 83.2% of P from P-only, low, medium, and high P + Al goethite, respectively. Additionally, we observed total Al removals of approximately 17, 27, and 25% from low, medium, and high P + Al goethite, respectively. The results demonstrate that treating both P-only and P + Al goethite with Fe(II) at room temperature, followed by a 24 h extraction using 1 M NaOH, significantly enhances the overall extractability of P and Al, including both aqueous and surface-adsorbed fractions, compared to Fe(II)-free controls. These findings advance our understanding of the recrystallization process and impurity substitution in goethite, offering promising avenues for developing new environmentally friendly methods to extract P and other impurities from goethitic iron ores at lower temperatures.


Assuntos
Alumínio , Cristalização , Compostos de Ferro , Minerais , Fósforo , Compostos de Ferro/química , Fósforo/química , Minerais/química , Alumínio/química , Catálise , Ferro/química , Compostos Ferrosos/química
2.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953777

RESUMO

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Assuntos
Poluentes Químicos da Água , Cinética , Radicais Livres/química , Poluentes Químicos da Água/química , Oxirredução , Ferro/química , Compostos de Ferro/química , Minerais/química
3.
Environ Sci Technol ; 58(4): 2007-2016, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232091

RESUMO

The dynamics of trace metals at mineral surfaces influence their fate and bioaccessibility in the environment. Trace metals on iron (oxyhydr)oxide surfaces display adsorption-desorption hysteresis, suggesting entrapment after aging. However, desorption experiments may perturb the coordination environment of adsorbed metals, the distribution of labile Fe(III), and mineral aggregation properties, influencing the interpretation of labile metal fractions. In this study, we investigated irreversible binding of nickel, zinc, and cadmium to goethite after aging times of 2-120 days using isotope exchange. Dissolved and adsorbed metal pools exchange rapidly, with half times <90 min, but all metals display a solid-associated fraction inaccessible to isotope exchange. The size of this nonlabile pool is the largest for nickel, with the smallest ionic radius, and the smallest for cadmium, with the largest ionic radius. Spectroscopy and extractions suggest that the irreversibly bound metals are incorporated in the goethite structure. Rapid exchange of labile solid-associated metals with solution demonstrates that adsorbed metals can sustain the dissolved pool in response to biological uptake or fluid flow. Trace metal fractions that irreversibly bind following adsorption provide a contaminant sequestration pathway, limit the availability of micronutrients, and record metal isotope signatures of environmental processes.


Assuntos
Compostos de Ferro , Níquel , Oligoelementos , Níquel/química , Compostos Férricos/química , Cádmio , Minerais/química , Íons , Isótopos , Adsorção
4.
Environ Sci Technol ; 58(33): 14812-14822, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39118219

RESUMO

The surface photochemical activity of goethite, which occurs widely in surface soils and sediments, plays a crucial role in the environmental transformation of various pollutants and natural organic matter. This study systemically investigated the mechanism of different types of surface hydroxyl groups on goethite in generating reactive oxygen species (ROSs) and Fe(III) reduction under sunlight irradiation. Surface hydroxyl groups were found to induce photoreductive dissolution of Fe(III) at the goethite-water interface to produce Fe2+(aq), while promoting the production of ROSs. Substitution of the surface hydroxyl groups on goethite by fluoride significantly inhibited the photochemical activity of goethite, demonstrating their important role in photochemical activation of goethite. The results showed that the surface hydroxyl groups (especially the terminating hydroxyl groups, ≡FeOH) led to the formation of Fe(III)-hydroxyl complexes via ligand-metal charge transfer on the goethite surface upon photoexcitation, facilitating the production of Fe2+(aq) and •OH. The bridging hydroxyl groups (≡Fe2OH) were shown to mainly catalyze the production of H2O2, leading to the subsequent light-driven Fenton reaction to produce •OH. These findings provide important insights into the activation of molecular oxygen on the goethite surface driven by sunlight in the environment, and the corresponding degradation of anthropogenic and natural organic compounds caused by the generated ROSs.


Assuntos
Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/química , Oxirredução , Compostos Férricos/química , Compostos de Ferro/química , Ferro/química , Minerais/química , Radical Hidroxila/química , Processos Fotoquímicos
5.
Environ Sci Technol ; 58(1): 410-420, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154084

RESUMO

SiO2 nanoparticles (SiO2NPs) are most widely available and coexisting with DOM at the mineral-water interface; however, the role of SiO2NPs in DOM fractionation and the underlying mechanisms have not been fully understood. Using Fourier transform ion cyclotron resonance mass spectrometry, combined with Fourier transform infrared spectroscopy and X-ray adsorption fine structure spectroscopy, was employed to investigate the adsorptive fractionation of litter layer-derived DOM on goethite coexisting with SiO2NPs under different pH conditions. Results indicated that the inhibitory effect of the coexisting SiO2NPs on OM sorbed by goethite was waning as environmental pH increased due to the reduced steric interactions and the concurrent elevated hydrogen bonding/hydrophobic partitioning interactions on the goethite surface. We observed the coexisting SiO2NPs inhibited the adsorption of high carboxylic-containing condensed aromatic/aromatics compounds on goethite under different pH conditions while improving the adsorption of highly unsaturated aliphatic/phenolic and carbohydrate-like compounds in an alkaline and/or circumneutral environment. More nitrogen-containing structures may favor the adsorption of phenolic and nonaromatic compounds to goethite by counteracting the negative effect of SiO2NPs. These findings suggest that DOM sequestration may be significantly regulated by the coexisting SiO2NPs at the mineral-water interface, which may further influence the carbon-nitrogen cycling and contaminant fate in natural environments.


Assuntos
Matéria Orgânica Dissolvida , Dióxido de Silício , Adsorção , Minerais/química , Compostos Orgânicos , Fenóis , Água , Nitrogênio
6.
Environ Sci Technol ; 58(3): 1731-1740, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206803

RESUMO

Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Compostos de Ferro , Água/química , Minerais/química , Ácidos Alcanossulfônicos/química , Compostos de Ferro/química , Adsorção , Concentração de Íons de Hidrogênio
7.
Environ Sci Technol ; 58(31): 13866-13878, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39037862

RESUMO

Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Compostos de Ferro , Minerais , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Propriedades de Superfície , Porosidade , Compostos de Ferro/química , Minerais/química , Concentração de Íons de Hidrogênio , Calibragem , Adsorção
8.
Environ Res ; 248: 118253, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278507

RESUMO

A weak electric field (WEF, 2 mA cm-2) was employed to promote Fe(III)/Fe(II) cycle on goethite-impregnated activated carbon (FeOOH@AC) filled in a continuous-flow column for enhanced Cr(VI) elimination from water. Surficial analysis and Cr species distribution showed that α-FeOOH of 0.2-1 µm was successfully synthesized and evenly loaded onto AC. Electron transfer from WEF to α-FeOOH was facilitated with AC as electron shuttles, thereby boosting Fe(III) reduction in the α-FeOOH. The generated Fe(II) reduced Cr(VI) and the resultant Cr(III) subsequently precipitated with OH- and Fe(III) to form Cr(OH)3 and (CrχFe1-χ)(OH)3. Therefore, the WEF-FeOOH@AC column exhibited a much lower Cr(VI) migration rate of 0.0018 cm PV-1 in comparison with 0.0037 cm PV-1 of the FeOOH@AC column, equal to 104 % higher Cr(VI) elimination capacity and 90 % longer column service life-span. Additionally, under different Cr(VI) loadings by varying either seepage velocities or influent Cr(VI) concentrations, the WEF-FeOOH@AC column maintained 1.0-1.5 folds higher Cr(VI) elimination and 0.9-1.4 folds longer longevity than those of the FeOOH@AC column owing to the interaction between FeOOH@AC and WEF. Our research demonstrated that WEF-FeOOH@AC was a potential method to promote Cr(VI) elimination from water and offer an effective strategy to facilitate Fe(III)/Fe(II) cycle in iron oxides.


Assuntos
Compostos Férricos , Compostos de Ferro , Minerais , Poluentes Químicos da Água , Água , Carvão Vegetal , Oxirredução , Cromo/análise , Poluentes Químicos da Água/análise , Compostos Ferrosos
9.
Environ Res ; 260: 119660, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048066

RESUMO

The knowledge about co-transport of goethite and As3+ to investigate the effect of goethite colloids on As3+ transport under various degrees of seawater intrusion, particular extremely conditions, in groundwater environment is still limited. The main objective is to investigate the influence of seawater intrusion on the sorption, migration, and reaction of As3+and goethite colloids into sand aquifer media under anoxic conditions by using the bench-scale and reactive geochemical modeling. The research consisted of two parts as follows: 1) column transport experiments consisting of 8 columns, which were packed by using synthesis groundwater at IS of 0.5, 50, 200, and 400 mM referring to the saline of seawater system in the study area, and 2) reactive transport modeling, the mathematical model (HYDRUS-1D) was applied to describe the co-transport of As3+ and goethite. Finally, to explain the interaction of goethite and As3+, the Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation was considered to support the experimental results and HYDRUS-1D model. The results of column experiments showed goethite colloids can significantly inhibit the mobility of As3+ under high IS conditions (>200 mM). The Rf of As3+ bound to goethite grows to higher sizes (47.5 and 65.0 µm for 200 and 400 mM, respectively) of goethite colloid, inhibiting As3+ migration through the sand columns. In contrast, based on Rf value, goethite colloids transport As3+ more rapidly than a solution with a lower IS (0.5 and 50 mM). The knowledge gained from this study would help to better understand the mechanisms of As3+ contamination in urbanized coastal groundwater aquifers and to assess the transport of As3+ in groundwater, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.


Assuntos
Arsenitos , Coloides , Compostos de Ferro , Minerais , Compostos de Ferro/química , Coloides/química , Minerais/química , Concentração Osmolar , Arsenitos/química , Arsenitos/análise , Água Subterrânea/química , Areia/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Modelos Químicos , Modelos Teóricos , Água do Mar/química
10.
Ecotoxicol Environ Saf ; 281: 116570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896902

RESUMO

Rice is one of the most important staple food crops; however, it is prone to cadmium (Cd) accumulation, which has negative health effects. Therefore, methods to reduce Cd uptake by rice are necessary. At present, there is limited research on the effects of co-application of silicon (Si) and goethite in mitigating Cd stress in rice. Furthermore, the specific mechanisms underlying the effects of their combined application on iron plaque formation in rice roots remain unclear. Therefore, this study analyzed the effects of the combined application of Si and goethite on the biomass, physiological stress indicators, Cd concentration, and iron plaques of rice using hydroponic experiments. The results revealed that co-treatment with both Si and goethite increased the plant height and dry weight, superoxide dismutase and catalase activities, photosynthetic pigment concentration, and root activity. Moreover, this treatment decreased the malondialdehyde concentration, repaired epidermal cells, reduced the Cd concentration in the roots by 57.2 %, and increased the number of iron plaques and Cd concentration by 150.9 % and 266.2 % in the amorphous and crystalline fractions, respectively. The Cd/Fe ratio in amorphous iron plaques also increased. Our findings suggest that goethite serves as a raw material for iron plaque formation, while Si enhances the oxidation capacity of rice roots. The application of a combination of Si and goethite increases the quantity and quality of iron plaques, enhancing its Cd fixation capacity. This study provides theoretical evidence for the effective inhibition of Cd uptake by iron plaques in rice, providing insights into methods for the remediation of Cd contamination.


Assuntos
Cádmio , Compostos de Ferro , Ferro , Minerais , Oryza , Raízes de Plantas , Silício , Poluentes do Solo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Silício/farmacologia , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo , Biomassa
11.
Ecotoxicol Environ Saf ; 284: 116910, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191134

RESUMO

The interaction between organic phosphorus (OP) and iron oxide significantly influences the phosphorus cycle in the natural environment. In shallow lakes, intense oxidation-reduction fluctuations constantly alter the existing form of iron oxides, but little is known about their impact on the adsorption and fractionation of OP molecules. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) was used to investigate the fractionation of OP from alkali-extracted sediment induced by crystalline goethite and amorphous ferrihydrite adsorption at a molecular scale. The results showed that ferrihydrite and goethite both exhibited high OP adsorption, and the adsorption amount decreased as the pH increased. The adsorption kinetics matched the pseudo-second-order equation. The ESI-FT-ICR MS analysis showed that 91 P-containing formulas were detected in the alkaline-extracted sediment solution. Ferrihydrite and goethite adsorbed 51 and 24 P-containing formulas, respectively, with adsorption rates of 56.0 % and 26.4 %. Ferrihydrite could adsorb more OP compounds than goethite, but no obvious molecular species selectivity was observed during the adsorption. The P-containing compounds, including unsaturated hydrocarbons-, lignin/carboxyl-rich alicyclic molecule (CRAM)-, tannin-, and carbohydrate-like molecular compounds, were more suitable for iron oxide adsorption. The double bond equivalence (DBE) is a valuable parameter that indicates OP fractionation during adsorption, and P-containing compounds with lower DBE values such as lipid- and protein-like molecular were prone to remain in the solution after adsorption. These research results provide insights into the biogeochemical cycling process of P in the natural environment.


Assuntos
Compostos Férricos , Sedimentos Geológicos , Compostos de Ferro , Minerais , Fósforo , Espectrometria de Massas por Ionização por Electrospray , Adsorção , Compostos Férricos/química , Fósforo/química , Fósforo/análise , Sedimentos Geológicos/química , Compostos de Ferro/química , Minerais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Fracionamento Químico/métodos , Lagos/química , Cinética , Análise de Fourier , Concentração de Íons de Hidrogênio
12.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473736

RESUMO

Debye temperatures of α-SnxFe1-xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge-discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s-1 and quadrupole splitting (∆) of 3.52 mm s-1. These values were larger than those of Sn10 (δ: 0.08 mm s-1, ∆: 0.00 mm s-1) and Sn20 (δ: 0.10 mm s-1, ∆: 0.00 mm s-1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10-7 (Ω cm)-1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10-7 (Ω cm)-1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g-1, showed initial capacities of 81 and 85 mAh g-1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g-1 found at 170 and 182 mAh g-1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs.


Assuntos
Compostos de Ferro , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Ferro/química , Minerais
13.
J Environ Sci (China) ; 139: 23-33, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105051

RESUMO

Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.


Assuntos
Compostos Férricos , Lignina , Oxirredução , Compostos Férricos/química , Minerais/química , Solo , Compostos Ferrosos
14.
Environ Sci Technol ; 57(13): 5243-5251, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940242

RESUMO

The sorption of Ce(III) on three abundant environmental minerals (goethite, anatase, and birnessite) was investigated. Batch sorption experiments using a radioactive 139Ce tracer were performed to investigate the key features of the sorption process. Differences in sorption kinetics and changes in oxidation states were found in the case of the sorption of Ce(III) on birnessite compared to that on other minerals. Speciation of cerium onto all of the studied minerals was investigated using spectral and microscopic methods: high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and X-ray absorption spectroscopy (XAS) in conjunction with theoretical calculations. It was found that during the sorption process onto birnessite, Ce(III) was oxidized to Ce(IV), while the Ce(III) on goethite and anatase surfaces remained unchanged. Oxidation of Ce(III) by sorption on birnessite was also accompanied by the formation of CeO2 nanoparticles on the mineral surface, which depended on the initial cerium concentration and pH value.


Assuntos
Cério , Minerais , Minerais/química , Adsorção
15.
Environ Sci Technol ; 57(30): 11096-11107, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467428

RESUMO

Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 µA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.


Assuntos
Compostos Férricos , Compostos de Ferro , Periplasma/metabolismo , Água , Desnitrificação , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Minerais/química , Ferro/química , Oxirredução , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Nitrogênio/metabolismo
16.
Environ Sci Technol ; 57(1): 214-221, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36469013

RESUMO

Predicting the fate and transport of pharmaceuticals in terrestrial environments requires knowledge of their interactions with complex mineral assemblages. To advance knowledge along this front, we examined the reactivity of pipemidic acid (PIP), a typical quinolone antibiotic, with quartz particles coated with a mixture of manganese oxide (MnO2) and goethite (α-FeOOH) under static and dynamic flow conditions. Batch and dynamic column experiments showed that PIP binding to MnO2 proceeded through a heterogeneous redox reaction, while binding to goethite was not redox-reactive. Mixed columns of aggregated goethite-manganese particles however enhanced redox reactivity because (i) goethite facilitated the transport of dissolved Mn(II) ion and increased the retention of PIP oxidation products, and (ii) MnO2 was protected from passivation. This mobility behavior was predicted using transport models accounting for adsorption and transformation kinetics of PIP on both goethite and MnO2. This work sheds new light on reactivity changes of mixtures of Fe and Mn oxides under flow-through conditions and will have important implications in predicting the fate and transport of redox-active organic compounds as well as development of new geomedia filters for environmental remediation.


Assuntos
Compostos de Ferro , Ferro , Ferro/química , Óxidos/química , Compostos de Manganês/química , Manganês , Areia , Minerais/química , Oxirredução , Adsorção , Preparações Farmacêuticas
17.
Environ Sci Technol ; 57(16): 6530-6539, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053498

RESUMO

Indicators of reduction in soil (IRIS) devices are low-cost soil redox sensors coated with Fe or Mn oxides, which can be reductively dissolved from the device under suitable redox conditions. Removal of the metal oxide coating from the surface, leaving behind the white film, can be quantified and used as an indicator of reducing conditions in soils. Manganese IRIS, coated with birnessite, can also oxidize Fe(II), resulting in a color change from brown to orange that complicates the interpretation of coating removal. Here, we studied field-deployed Mn IRIS films where Fe oxidation was present to unravel the mechanisms of Mn oxidation of Fe(II) and the resulting minerals on the IRIS film surface. We observed reductions in the Mn average oxidation state when Fe precipitation was evident. Fe precipitation was primarily ferrihydrite (30-90%), but lepidocrocite and goethite were also detected, notably when the Mn average oxidation state decreased. The decrease in the average oxidation state of Mn was due to the adsorption of Mn(II) to the oxidized Fe and the precipitation of rhodochrosite (MnCO3) on the film. The results were variable on small spatial scales (<1 mm), highlighting the suitability of IRIS in studying heterogeneous redox reactions in soil. Mn IRIS also provides a tool to bridge lab and field studies of the interactions between Mn oxides and reduced constituents.


Assuntos
Compostos Férricos , Solo , Oxirredução , Óxidos , Manganês , Compostos Ferrosos
18.
Environ Res ; 231(Pt 3): 116260, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247650

RESUMO

Goethite is ubiquitous in the environment and plays key role in preserving dissolved organic matter (DOM) and deactivating potentially toxic elements (PTEs) by adsorbing DOM and PTEs. Various non-Fe metals are usually incorporated into natural goethite, substituting Fe in the goethite structure, which dramatically influence the physico-chemical properties and adsorption behavior of the goethite. In the present study, adsorption of DOM and Pb(II) on Mn-substituted goethite samples was investigated. The results displayed that the specific surface area (SSA) of mineral samples increased by 67.6% as the incorporation of Mn for Fe, from 25.71 m2 g-1 for pure goethite to 43.09 m2 g-1for Mn-goethite. Besides, the Mn substitution caused more hydroxyl groups and relatively fewer positive charges on mineral surface, and Mn in the Mn-goethite samples was predominantly present as Mn(III). The amount of DOM adsorbed to per unit mass of goethite was increased as Mn content increased, which was attributed to Mn incorporation increasing the SSA of mineral samples. However, the SSA-normalized absorption capacity for goethite to DOM was decreased by Mn because Mn substitution decreased the number of positive charges of mineral samples, which weakened the electrostatic attraction between DOM and the minerals. The amount of Pb(II) adsorbed to per unit mass of goethite was increased by Mn substitution, and the amount of Pb(II) adsorbed to per unit SSA of goethite increased as the amount of Mn substitution increased, indicating that the increased capacity for adsorbing Pb was not only caused by the SSA increasing but also by there were more surface hydroxyl groups on the Mn-goethite than pure goethite and Pb(II) preferentially adsorbed to Mn sites on the Mn-goethite. The present study results showed that Mn-goethite could be used to sequester DOM and remediate soil contaminated with PTEs because Mn-goethite has a high adsorption capacity and is environmentally benign.


Assuntos
Matéria Orgânica Dissolvida , Solo , Solo/química , Adsorção , Cinética , Minerais/química
19.
Biodegradation ; 34(2): 155-167, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36592293

RESUMO

Bioreduction of Cr(VI) is cost-effective and environmentally friendly, however, the slow bioreduction rate limits its application. In this study, the potential synergistic enhancement of Cr(VI) bioreduction by shewanella oneidensis MR-1 (S. oneidensis) with goethite and riboflavin (RF) was investigated. The results showed that the S. oneidensis reaction system reduce 29.2% of 20 mg/L Cr(VI) after 42 h reaction, while the S. oneidensis/goethite/RF reaction system increased the Cr(VI) reduction rate to 87.74%. RF as an efficient electron shuttle and Fe(II) from goethite bioreduction were identified as the crucial components in Cr(VI) reduction. XPS analysis showed that the final precipitates of Cr(VI) reduction were Cr(CH3C(O)CHC(O)CH3)3 and Cr2O3 and adhered to the bacterial cell surface. In this process, the microbial surface functional groups such as hydroxyl and carboxyl groups participated in the adsorption and reduction of Cr(VI). Meanwhile, an increase in cytochrome c led to an increase in electron transfer system activity (ETSA), causing a significant enhancement in extracellular electron transfer efficiency. This study provides insight into the mechanism of Cr(VI) reduction in a complex environment where microorganisms, iron minerals and RF coexist, and the synergistic treatment method of Fe(III) minerals and RF has great potential application for Cr(VI) detoxification in aqueous environment.


Assuntos
Compostos Férricos , Minerais , Oxirredução , Cromo , Riboflavina/metabolismo
20.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762603

RESUMO

The present study investigates the relationship between the local structure, photocatalytic ability, and cathode performances in sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) using Ni-substituted goethite nanoparticles (NixFe1-xOOH NPs) with a range of 'x' values from 0 to 0.5. The structural characterization was performed applying various techniques, including X-ray diffractometry (XRD); thermogravimetry differential thermal analysis (TG-DTA); Fourier transform infrared spectroscopy (FT-IR); X-ray absorption spectroscopy (XANES/EXAFS), both measured at room temperature (RT); 57Fe Mössbauer spectroscopy recorded at RT and low temperatures (LT) from 20 K to 300 K; Brunauer-Emmett-Teller surface area measurement (BET), and diffuse reflectance spectroscopy (DRS). In addition, the electrical properties of NixFe1-xOOH NPs were evaluated by solid-state impedance spectroscopy (SS-IS). XRD showed the presence of goethite as the only crystalline phase in prepared samples with x ≤ 0.20, and goethite and α-Ni(OH)2 in the samples with x > 0.20. The sample with x = 0.10 (Ni10) showed the highest photo-Fenton ability with a first-order rate constant value (k) of 15.8 × 10-3 min-1. The 57Fe Mössbauer spectrum of Ni0, measured at RT, displayed a sextet corresponding to goethite, with an isomer shift (δ) of 0.36 mm s-1 and a hyperfine magnetic distribution (Bhf) of 32.95 T. Moreover, the DC conductivity decreased from 5.52 × 10-10 to 5.30 × 10-12 (Ω cm)-1 with 'x' increasing from 0.10 to 0.50. Ni20 showed the highest initial discharge capacity of 223 mAh g-1, attributed to its largest specific surface area of 174.0 m2 g-1. In conclusion, NixFe1-xOOH NPs can be effectively utilized as visible-light-activated catalysts and active cathode materials in secondary batteries.


Assuntos
Minerais , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Eletrodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa