Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroendocrinology ; 111(12): 1219-1230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361699

RESUMO

INTRODUCTION: Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS: To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS: Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION: These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.


Assuntos
Endocanabinoides/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Neurônios/fisiologia , Puberdade/metabolismo , Transdução de Sinais/fisiologia , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Fator de Crescimento Insulin-Like I/administração & dosagem , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos
2.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825350

RESUMO

Melatonin, a pineal gland secretion, is an amphiphilic neurohormone involved in the biological and physiologic regulation of bodily functions. Numerous studies have shown the effects of melatonin on the release of gonadotropins and their actions at one or several levels of the hypothalamic-pituitary-gonadal axis. However, direct melatonin action on gonadotropin-releasing hormone (GnRH) neurons and its mechanism of action remain unclear. Here, plasma melatonin levels were measured and the effect of melatonin on GnRH neurons was assessed using brain slice patch clamp techniques. The plasma melatonin levels in prepubertal mice were higher than those in the adults. Melatonin itself did not change the firing activity of GnRH neurons. Interestingly, the kainate receptor-mediated responses but not the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- and N-methyl-D-aspartic acid (NMDA)-induced responses were suppressed by melatonin in both the voltage clamp and current clamp modes. The inhibitory effects of the kainate-induced response by melatonin tended to increase with higher melatonin concentrations and persisted in the presence of tetrodotoxin, a voltage-sensitive Na+ channel blocker, or luzindole, a non-selective melatonin receptor antagonist. However, the response was completely abolished by pretreatment with pertussis toxin. These results suggest that melatonin can regulate GnRH neuronal activities in prepubertal mice by partially suppressing the excitatory signaling mediated by kainate receptors through pertussis toxin-sensitive G-protein-coupled receptors.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Melatonina/farmacologia , Neurônios/fisiologia , Receptores de Ácido Caínico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Caínico/farmacologia , Masculino , Melatonina/sangue , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Toxina Pertussis/farmacologia , Puberdade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
J Vet Med Sci ; 82(8): 1113-1117, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554955

RESUMO

Cow fertility decreases with age, but the hypothalamic pathomechanisms are not understood. Anti-Müllerian hormone (AMH) stimulates gonadotropin-releasing hormone (GnRH) neurons via AMH receptor type 2 (AMHR2), and most GnRH neurons in the preoptic area (POA), arcuate nucleus (ARC), and median eminence (ME) express AMH and AMHR2. Therefore, we hypothesized that both protein amounts would differ in the anterior hypothalamus (containing the POA) and posterior hypothalamus (containing the ARC and ME) between young post-pubertal heifers and old cows. Western blot analysis showed lower (P<0.05) expressions of AMH and AMHR2 in the posterior hypothalamus, but not in the anterior hypothalamus, of old Japanese Black cows compared to young heifers. Therefore, AMH and AMHR2 were decreased in the posterior hypothalami of old cows.


Assuntos
Hormônio Antimülleriano/metabolismo , Hipotálamo/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores Etários , Animais , Bovinos , Feminino , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética
4.
Mol Neurobiol ; 57(2): 1217-1232, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705443

RESUMO

The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.


Assuntos
Proteínas de Homeodomínio/metabolismo , Neuropeptídeos/metabolismo , Núcleo Supraquiasmático/crescimento & desenvolvimento , Núcleo Supraquiasmático/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo
5.
Domest Anim Endocrinol ; 72: 106432, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169754

RESUMO

Circulating concentrations of Anti-Müllerian hormone (AMH) can indicate fertility in various animals, but the physiological mechanisms underlying the effect of AMH on fertility remain unknown. We recently discovered that AMH has extragonadal functions via its main receptor, AMH receptor type 2 (AMHR2). Specifically, AMH stimulates the secretion of luteinizing hormone and follicle-stimulating hormone from bovine gonadotrophs. Moreover, gonadotrophs themselves express AMH to exert paracrine/autocrine functions, and AMH can activate gonadotropin-releasing-hormone (GnRH) neurons in mice. This study aimed to evaluate whether AMH and AMHR2 are detected in areas of the brain relevant to neuroendocrine control of reproduction: the preoptic area (POA), arcuate nucleus (ARC), and median eminence (ME), and in particular within GnRH neurons. Reverse transcription-polymerase chain reaction detected both AMH and AMHR2 mRNA in tissues containing POA, as well as in those containing both ARC and ME, collected from postpubertal heifers. Western blotting detected AMH and AMHR2 protein in the collected tissues. Triple fluorescence immunohistochemistry revealed that most cell bodies or fibers of GnRH neurons were AMHR2-positive and AMH-positive, although some were negative. Immunohistochemistry revealed that 75% to 85% of cell bodies and fibers of GnRH neurons were positive for both AMH and AMHR2 in the POA, ARC, and both the internal and external zones of the ME. The cell bodies of GnRH neurons were situated around other AMH-positive cell bodies or fibers of GnRH and non-GNRH neurons. Our findings thus indicate that AMH and AMHR2 are detected in most cell bodies or fibers of GnRH neurons in the POA, ARC, and ME of heifer brains. These data support the need for further study as to how AMH and AMHR2 act within the hypothalamus to influence GnRH and gonadotropin secretion.


Assuntos
Hormônio Antimülleriano/metabolismo , Encéfalo/metabolismo , Bovinos , Corpo Celular/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética
6.
Brain Struct Funct ; 221(4): 2035-47, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25758403

RESUMO

Kisspeptin (encoded by KISS1) is a crucial activator of reproductive function. The role of kisspeptin has been studied extensively within the hypothalamus but little is known about its significance in other areas of the brain. KISS1 and its cognate receptor are expressed in the amygdala, a key limbic brain structure with inhibitory projections to hypothalamic centers involved in gonadotropin secretion. We therefore hypothesized that kisspeptin has effects on neuronal activation and reproductive pathways beyond the hypothalamus and particularly within the amygdala. To test this, we mapped brain neuronal activity (using manganese-enhanced MRI) associated with peripheral kisspeptin administration in rodents. We also investigated functional relevance by measuring the gonadotropin response to direct intra-medial amygdala (MeA) administration of kisspeptin and kisspeptin antagonist. Peripheral kisspeptin administration resulted in a marked decrease in signal intensity in the amygdala compared to vehicle alone. This was associated with an increase in luteinizing hormone (LH) secretion. In addition, intra-MeA administration of kisspeptin resulted in increased LH secretion, while blocking endogenous kisspeptin signaling within the amygdala by administering intra-MeA kisspeptin antagonist decreased both LH secretion and LH pulse frequency. We provide evidence for the first time that neuronal activity within the amygdala is decreased by peripheral kisspeptin administration and that kisspeptin signaling within the amygdala contributes to the modulation of gonadotropin release and pulsatility. Our data suggest that kisspeptin is a 'master regulator' of reproductive physiology, integrating limbic circuits with the regulation of gonadotropin-releasing hormone neurons and reproductive hormone secretion.


Assuntos
Tonsila do Cerebelo/metabolismo , Kisspeptinas/fisiologia , Hormônio Luteinizante/metabolismo , Reprodução , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Meios de Contraste , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Kisspeptinas/administração & dosagem , Kisspeptinas/metabolismo , Imageamento por Ressonância Magnética , Manganês , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa