Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Mol Cell ; 80(6): 940-954.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33202251

RESUMO

Mechanisms that control mobilization of cytosolic calcium [Ca2+]i are key for regulation of numerous eukaryotic cell functions. One such paradigmatic mechanism involves activation of phospholipase Cß (PLCß) enzymes by G protein ßγ subunits from activated Gαi-Gßγ heterotrimers. Here, we report identification of a master switch to enable this control for PLCß enzymes in living cells. We find that the Gαi-Gßγ-PLCß-Ca2+ signaling module is entirely dependent on the presence of active Gαq. If Gαq is pharmacologically inhibited or genetically ablated, Gßγ can bind to PLCß but does not elicit Ca2+ signals. Removal of an auto-inhibitory linker that occludes the active site of the enzyme is required and sufficient to empower "stand-alone control" of PLCß by Gßγ. This dependence of Gi-Gßγ-Ca2+ on Gαq places an entire signaling branch of G-protein-coupled receptors (GPCRs) under hierarchical control of Gq and changes our understanding of how Gi-GPCRs trigger [Ca2+]i via PLCß enzymes.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Fosfolipase C beta/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Citosol/metabolismo , Células HEK293 , Humanos , Ligação Proteica/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética
2.
EMBO J ; 42(11): e112940, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37038975

RESUMO

The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and ß-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R ß-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and ß-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and ß-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.


Assuntos
Angiotensina II , Transdução de Sinais , Humanos , Microscopia Crioeletrônica , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo , Angiotensina II/química , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Receptores de Angiotensina/metabolismo
3.
RNA ; 30(9): 1213-1226, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38918043

RESUMO

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α-primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and in human cells they cause telomere shortening that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their binding to GQ RNA and their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.


Assuntos
Inibidores Enzimáticos , Quadruplex G , Telomerase , Telômero , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Telomerase/genética , Humanos , Telômero/metabolismo , Quadruplex G/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/química , Replicação do DNA/efeitos dos fármacos , DNA Polimerase I/antagonistas & inibidores , DNA Polimerase I/metabolismo , DNA/metabolismo , Aminoquinolinas , Porfirinas , DNA Primase
4.
Proc Natl Acad Sci U S A ; 120(1): e2216599120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584299

RESUMO

Nonimage-forming vision in mammals is mediated primarily by melanopsin (OPN4)-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, melanopsin predominantly activates, via Gαq,11,14, phospholipase C-ß4 to open transient receptor 6 (TRPC6) and TRPC7 channels. In M2- and M4-ipRGCs, however, a prominent phototransduction mechanism involves the opening of hyperpolarization- and cyclic nucleotide-gated channels via cyclic nucleotide, although the upstream steps remain uncertain. We report here experiments, primarily on M4-ipRGCs, with photo-uncaging of cyclic nucleotides and virally expressed CNGA2 channels to conclude that the second messenger is cyclic adenosine monophosphate (cAMP) - very surprising considering that cyclic guanosine monophosphate (cGMP) is used in almost all cyclic nucleotide-mediated phototransduction mechanisms across the animal kingdom. We further found that the upstream G protein is likewise Gq, which via its Gßγ subunits directly activates adenylyl cyclase (AC). Our findings are a demonstration in a native cell of a cross-motif GPCR signaling pathway from Gq directly to AC with a specific function.


Assuntos
Adenilil Ciclases , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Transdução de Sinal Luminoso , Células Ganglionares da Retina , Animais , Camundongos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Transdução de Sinal Luminoso/fisiologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo , Transdução de Sinais/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(52): e2315282120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109525

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) serve as primary photoceptors by expressing the photopigment, melanopsin, and also as retinal relay neurons for rod and cone signals en route to the brain, in both cases for the purpose of non-image vision as well as aspects of image vision. So far, six subtypes of ipRGCs (M1 through M6) have been characterized. Regarding their phototransduction mechanisms, we have previously found that, unconventionally, rhabdomeric (microvillous) and ciliary signaling motifs co-exist within a given M1-, M2-, and M4-ipRGC, with the first mechanism involving PLCß4 and TRPC6,7 channels and the second involving cAMP and HCN channels. We have now examined M3-, M5-, and M6-cells and found that each cell likewise uses both signaling pathways for phototransduction, despite differences in the percentage representation by each pathway in a given ipRGC subtype for bright-flash responses (and saturated except for M6-cells). Generally, M3- and M5-cells show responses quite similar in kinetics to M2-responses, and M6-cell responses resemble broadly those of M1-cells although much lower in absolute sensitivity and amplitude. Therefore, similar to rod and cone subtypes in image vision, ipRGC subtypes possess the same phototransduction mechanism(s) even though they do not show microvilli or cilia morphologically.


Assuntos
Neurônios Retinianos , Visão Ocular , Transdução de Sinal Luminoso/fisiologia , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Neurônios Retinianos/metabolismo , Opsinas de Bastonetes/metabolismo
6.
Mol Cell Proteomics ; 22(11): 100649, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730182

RESUMO

Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Neoplasias Uveais , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/farmacologia , Proliferação de Células , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Proteína Quinase C/metabolismo , Biologia Computacional , Mutação
7.
J Biol Chem ; 299(12): 105418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923138

RESUMO

Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.


Assuntos
Melanoma , Proteínas Serina-Treonina Quinases , Neoplasias Uveais , Humanos , Linhagem Celular Tumoral , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/enzimologia , Neoplasias Uveais/genética
8.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777097

RESUMO

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Assuntos
Macrófagos Alveolares , Material Particulado , Proteínas RGS , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Proteínas RGS/genética , Proteínas RGS/metabolismo , Material Particulado/toxicidade , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Ratos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Bovinos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Linhagem Celular , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Apoptose/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
9.
Synapse ; 78(5): e22310, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39304968

RESUMO

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulators (AMPAkines) have a multitude of promising therapeutic properties. The pharmaceutical development of high impact AMPAkines has, however, been limited by the appearance of calcium-dependent neuronal toxicity and convulsions in vivo. Such toxicity is not observed at exceptionally high concentrations of low impact AMPAkines. Because most AMPAR are somewhat impermeable to calcium, the current study sought to examine the extent to which different mechanisms contribute to the rise in intracellular calcium in the presence of high impact ampakines. In the presence of AMPA alone, cytosolic calcium elevation is shown to be sodium-dependent. In the presence of high impact AMPAkines such as cyclothiazide (CTZ) or CX614, however, AMPAR potentiation also activates an additional mechanism that induces calcium release from endoplasmic reticular (ER) stores. The pathway that connects AMPAR to the ER system involves a Gq-protein, phospholipase Cß-mediated inositol triphosphate (InsP3) formation, and ultimately stimulation of InsP3-receptors located on the ER. The same linkage was not observed using high concentrations of the low impact AMPAkines, CX516 (Ampalex), and CX717. We also demonstrate that CX614 produces neuronal hyper-excitability at therapeutic doses, whereas the newer generation low impact AMPAkine CX1739 is safe at exceedingly high doses. Although earlier studies have demonstrated a functional linkage between AMPAR and G-proteins, this report demonstrates that in the presence of high impact AMPAkines, AMPAR also couple to a Gq-protein, which triggers a secondary calcium release from the ER and provides insight into the disparate actions of high and low impact AMPAkines.


Assuntos
Cálcio , Córtex Cerebral , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Neurônios , Receptores de AMPA , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Células Cultivadas , Ratos , Oxazinas
10.
Neurol Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987510

RESUMO

INTRODUCTION: Since the initial identification of Miller Fisher syndrome (MFS) and Bickerstaff brainstem encephalitis (BBE),significant milestones have been achieved in understanding these diseases.Discoveries of common serum antibodies (IgG anti-GQ1b), antecedent infections, neurophysiological data, andneuroimaging suggested a shared autoimmune pathogenetic mechanism rather than distinct pathogenesis, leadingto the hypothesis that both diseases are part of a unified syndrome, termed "Fisher-Bickerstaff syndrome". The subsequent identification of atypical anti-GQ1b-positive forms expanded the classification to a broader condition known as "Anti-GQ1b-Antibody syndrome". METHODS: An exhaustive literature review was conducted, analyzing a substantial body of research spanning from the initialdescriptions of the syndrome's components to recent developments in diagnostic classification and researchperspectives. RESULTS: Anti-GQ1b syndrome encompasses a continuous spectrum of conditions defined by a common serological profilewith varying degrees of peripheral (PNS) and central nervous system (CNS) involvement. MFS and BBE represent theopposite ends of this spectrum, with MFS primarily affecting the PNS and BBE predominantly involving the CNS.Recently identified atypical forms, such as acute ophthalmoparesis, acute ataxic neuropathy withoutophthalmoparesis, Guillain-Barré syndrome (GBS) with ophthalmoparesis, MFS-GBS and BBE-GBS overlap syndromes,have broadened this spectrum. CONCLUSION: This work aims to provide an extensive, detailed, and updated overview of all aspects of the anti-GQ1b syndromewith the intention of serving as a stepping stone for further shaping thereof. Special attention was given to therecently identified atypical forms, underscoring their significance in redefining the boundaries of the syndrome.

11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990469

RESUMO

G protein-coupled receptors (GPCRs) are gatekeepers of cellular homeostasis and the targets of a large proportion of drugs. In addition to their signaling activity at the plasma membrane, it has been proposed that their actions may result from translocation and activation of G proteins at endomembranes-namely endosomes. This could have a significant impact on our understanding of how signals from GPCR-targeting drugs are propagated within the cell. However, little is known about the mechanisms that drive G protein movement and activation in subcellular compartments. Using bioluminescence resonance energy transfer (BRET)-based effector membrane translocation assays, we dissected the mechanisms underlying endosomal Gq trafficking and activity following activation of Gq-coupled receptors, including the angiotensin II type 1, bradykinin B2, oxytocin, thromboxane A2 alpha isoform, and muscarinic acetylcholine M3 receptors. Our data reveal that GPCR-promoted activation of Gq at the plasma membrane induces its translocation to endosomes independently of ß-arrestin engagement and receptor endocytosis. In contrast, Gq activity at endosomes was found to rely on both receptor endocytosis-dependent and -independent mechanisms. In addition to shedding light on the molecular processes controlling subcellular Gq signaling, our study provides a set of tools that will be generally applicable to the study of G protein translocation and activation at endosomes and other subcellular organelles, as well as the contribution of signal propagation to drug action.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Endocitose/fisiologia , Endossomos/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Células HEK293 , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Transdução de Sinais/fisiologia , beta-Arrestinas/fisiologia
12.
Int J Mol Sci ; 25(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39408627

RESUMO

Cardiac remodeling, a critical process that can lead to heart failure, is primarily characterized by cardiac hypertrophy. Studies have shown that transgenic mice with Gαq receptor blockade exhibit reduced hypertrophy under induced pressure overload. GQ262, a novel Gαq/11 inhibitor, has demonstrated good biocompatibility and specific inhibitory effects on Gαq/11 compared to other inhibitors. However, its role in cardiac remodeling remains unclear. This study aims to explore the anti-cardiac remodeling effects and mechanisms of GQ262 both in vitro and in vivo, providing data and theoretical support for its potential use in treating cardiac remodeling diseases. Cardiac hypertrophy was induced in mice via transverse aortic constriction (TAC) for 4 weeks and in H9C2 cells through phenylephrine (PE) induction, confirmed with WGA and H&E staining. We found that GQ262 improved cardiac function, inhibited the protein and mRNA expression of hypertrophy markers, and reduced the levels of apoptosis and fibrosis. Furthermore, GQ262 inhibited the Akt/mTOR signaling pathway activation induced by TAC or PE, with its therapeutic effects disappearing upon the addition of the Akt inhibitor ARQ092. These findings reveal that GQ262 inhibits cardiomyocyte hypertrophy and apoptosis through the Akt/mTOR signaling pathway, thereby reducing fibrosis levels and mitigating cardiac remodeling.


Assuntos
Cardiomegalia , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Remodelação Ventricular , Animais , Camundongos , Ratos , Apoptose/efeitos dos fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/tratamento farmacológico , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Fibrose , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenilefrina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/efeitos dos fármacos
13.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
14.
Am J Physiol Cell Physiol ; 324(3): C787-C797, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689673

RESUMO

The influence of extracellular and intracellular calcium on smooth muscle contractile activity varies between organs. In response to G protein-coupled receptor (GPCR) stimulation, the urinary bladder detrusor muscle has shown a 70% dependence on extracellular calcium, whereas the urothelium and lamina propria (U&LP) has a 20%-50% dependence. However, as this only accounts for partial contractile activity, the contribution of intracellular calcium and calcium sensitization pathways remains unclear. This study assessed the role of intracellular signaling pathways on GPCR-mediated urinary bladder U&LP contraction. Porcine U&LP responses to activation of the Gq/11-coupled muscarinic, histamine, 5-hydroxytryptamine (serotonin), neurokinin, prostaglandin, and angiotensin II receptors were assessed with three selective inhibitors of store-released intracellular calcium, 2-aminoethyl diphenylborinate (2-APB), cyclopiazonic acid (CPA), and ruthenium red, and three Rho kinase inhibitors, fasudil, Y-27632, and GSK269962. There was no discernible impact on receptor agonist-induced contractions of the U&LP after blocking intracellular calcium pathways, suggesting that this tissue is more sensitive to alterations in the availability of extracellular calcium. However, an alternative mechanism of action for GPCR-mediated contraction was identified to be the activation of Rho kinase, such as when Y-27632 significantly reduced the GPCR-mediated contractile activity of the U&LP by approximately 50% (P < 0.05, n = 8). This suggests that contractile responses of the bladder U&LP do not involve a significant release of calcium from intracellular stores, but that Gq/11-coupled receptor activation causes calcium sensitization via Rho kinase. This study highlights a key role for Rho kinase in the urinary bladder, which may provide a novel target in the future pharmaceutical management of bladder contractile disorders.


Assuntos
Cálcio , Bexiga Urinária , Animais , Suínos , Bexiga Urinária/metabolismo , Cálcio/metabolismo , Quinases Associadas a rho/metabolismo , Urotélio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Músculo Liso/metabolismo , Mucosa/metabolismo , Contração Muscular
15.
Diabetologia ; 66(8): 1501-1515, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217659

RESUMO

AIMS/HYPOTHESIS: After birth, the neonatal islets gradually acquire glucose-responsive insulin secretion, a process that is subjected to maternal imprinting. Although NEFA are major components of breastmilk and insulin secretagogues, their role for functional maturation of neonatal beta cells is still unclear. NEFA are the endogenous ligands of fatty acid receptor 1 (FFA1, encoded by Ffar1 in mice), a Gq-coupled receptor with stimulatory effect on insulin secretion. This study investigates the role of FFA1 in neonatal beta cell function and in the adaptation of offspring beta cells to parental high-fat feeding. METHODS: Wild-type (WT) and Ffar1-/- mice were fed high-fat (HFD) or chow diet (CD) for 8 weeks before mating, and during gestation and lactation. Blood variables, pancreas weight and insulin content were assessed in 1-, 6-, 11- and 26-day old (P1-P26) offspring. Beta cell mass and proliferation were determined in P1-P26 pancreatic tissue sections. FFA1/Gq dependence of insulin secretion was evaluated in isolated islets and INS-1E cells using pharmacological inhibitors and siRNA strategy. Transcriptome analysis was conducted in isolated islets. RESULTS: Blood glucose levels were higher in CD-fed Ffar1-/- P6-offspring compared with CD-fed WT P6-offspring. Accordingly, glucose-stimulated insulin secretion (GSIS) and its potentiation by palmitate were impaired in CD Ffar1-/- P6-islets. In CD WT P6-islets, insulin secretion was stimulated four- to fivefold by glucose and five- and sixfold over GSIS by palmitate and exendin-4, respectively. Although parental HFD increased blood glucose in WT P6-offspring, it did not change insulin secretion from WT P6-islets. In contrast, parental HFD abolished glucose responsiveness (i.e. GSIS) in Ffar1-/- P6-islets. Inhibition of Gq by FR900359 or YM-254890 in WT P6-islets mimicked the effect of Ffar1 deletion, i.e. suppression of GSIS and of palmitate-augmented GSIS. The blockage of Gi/o by pertussis toxin (PTX) enhanced (100-fold) GSIS in WT P6-islets and rendered Ffar1-/- P6-islets glucose responsive, suggesting constitutive activation of Gi/o. In WT P6-islets, FR900359 cancelled 90% of PTX-mediated stimulation, while in Ffar1-/- P6-islets it completely abolished PTX-elevated GSIS. The secretory defect of Ffar1-/- P6-islets did not originate from insufficient beta cells, since beta cell mass increased with the offspring's age irrespective of genotype and diet. In spite of that, in the breastfed offspring (i.e. P1-P11) beta cell proliferation and pancreatic insulin content had a genotype- and diet-driven dynamic. Under CD, the highest proliferation rate was reached by the Ffar1-/- P6 offspring (3.95% vs 1.88% in WT P6), whose islets also showed increased mRNA levels of genes (e.g. Fos, Egr1, Jun) typically high in immature beta cells. Although parental HFD increased beta cell proliferation in both WT (4.48%) and Ffar1-/- (5.19%) P11 offspring, only the WT offspring significantly increased their pancreatic insulin content upon parental HFD (5.18 µg under CD to 16.93 µg under HFD). CONCLUSIONS/INTERPRETATION: FFA1 promotes glucose-responsive insulin secretion and functional maturation of newborn islets and is required for adaptive offspring insulin secretion in the face of metabolic challenge, such as parental HFD.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Feminino , Camundongos , Animais , Glucose/farmacologia , Glucose/metabolismo , Secreção de Insulina , Glicemia/metabolismo , Animais Recém-Nascidos , Ilhotas Pancreáticas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/metabolismo
16.
J Biol Chem ; 298(1): 101495, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919964

RESUMO

Metabolic reprogramming has been shown to occur in uveal melanoma (UM), the most common intraocular tumor in adults. Mechanisms driving metabolic reprogramming in UM are poorly understood. Elucidation of these mechanisms could inform development of new therapeutic strategies for metastatic UM, which has poor prognosis because existing therapies are ineffective. Here, we determined whether metabolic reprogramming is driven by constitutively active mutant α-subunits of the heterotrimeric G proteins Gq or G11 (Gq/11), the oncogenic drivers in ∼90% of UM patients. Using PET-computed tomography imaging, microphysiometry, and GC/MS, we found that inhibition of oncogenic Gq/11 with the small molecule FR900359 (FR) attenuated glucose uptake by UM cells in vivo and in vitro, blunted glycolysis and mitochondrial respiration in UM cell lines and tumor cells isolated from patients, and reduced levels of several glycolytic and tricarboxylic acid cycle intermediates. FR acutely inhibited glycolysis and respiration and chronically attenuated expression of genes in both metabolic processes. UM therefore differs from other melanomas that exhibit a classic Warburg effect. Metabolic reprogramming in UM cell lines and patient samples involved protein kinase C and extracellular signal-regulated protein kinase 1/2 signaling downstream of oncogenic Gq/11. Chronic administration of FR upregulated expression of genes involved in metabolite scavenging and redox homeostasis, potentially as an adaptive mechanism explaining why FR does not efficiently kill UM tumor cells or regress UM tumor xenografts. These results establish that oncogenic Gq/11 signaling is a crucial driver of metabolic reprogramming in UM and lay a foundation for studies aimed at targeting metabolic reprogramming for therapeutic development.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Melanoma , Neoplasias Uveais , Carcinogênese , Linhagem Celular Tumoral , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Uveais/metabolismo
17.
Biochem Biophys Res Commun ; 642: 107-112, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566561

RESUMO

Avoidance of harmful substances is survival strategy used cross invertebrates and vertebrates. For example, the nematode Caenorhabditis elegans evolves a sufficient avoidance response to pathogenic bacteria. Despite G protein has been found to exert neural plasticity for avoidance behaviours in C. elegans, the function of Gi/o and Gq subunit signalling in experience-dependent aversive behaviour remains unclear. In this study, we show that EGL-30/Gq coupled with EGL-8/UNC-13 regulates aversive behaviour of C. elegans to pathogenic bacterium Pseudomonas aeruginosa PA01 via acetylcholine and its receptor nAChR. Pyocyanin, a toxin secreted from P. aeruginosa, acts as a signal molecule to trigger aversive behaviour. ODR-3 and ODR-7 in AWA and AWC neurons function as upstream of EGL-30 to induce experience-dependent aversive behaviour to P. aeruginosa, respectively. These results suggested that a novel signalling pathway to regulate a behavioural response.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Pseudomonas aeruginosa/metabolismo , Aprendizagem da Esquiva , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/fisiologia
18.
Glycoconj J ; 40(6): 621-630, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921922

RESUMO

In this study we observed that human GD1c/GT1a/GQ1b synthase (hST8Sia V) is particularly expressed in human glioblastoma cells. To address the mechanism regulating human glioblastoma-specific gene expression of the hST8Sia V, after the transcription start site (TSS) was identified by the 5'-rapid amplification of cDNA end with total RNA from human glioblastoma U87MG cells, the 5'-flanking region (2.5 kb) of the hST8Sia V gene was isolated and its promoter activity was examined. By luciferase reporter assay, this 5'-flanking region revealed strong promoter activity in only U-87MG cells, but not in other tissue-derived cancer cells. 5'-deletion mutant analysis showed that the region from -1140 to -494 is crucial for transcription of the hST8Sia V gene in U87MG cells. This region contains the activator protein-1 (AP-1) binding site, the main target of the c-Jun N-terminal kinase (JNK) downstream. The AP-1 binding site at -1043/-1037 was proved to be indispensable for the hST8Sia V gene-specific expression in U87MG cells by site-directed mutagenesis. Moreover, the transcriptional activation of hST8Sia V gene in U87MG cells was strongly inhibited by a specific JNK inhibitor, SP600125. These results suggest that the hST8Sia V gene-specific expression in U87MG cells is controlled by JNK/AP-1 signaling pathway.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Fator de Transcrição AP-1/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional
19.
BMC Neurol ; 23(1): 170, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106331

RESUMO

BACKGROUND: Anti-GQ1b antibody syndrome is a rare autoimmune neuropathy, and atypical cases are even more rare, only a few cases have been reported. Anti-GQ1b antibody syndrome is difficult in early diagnosis and prone to misdiagnosis. Generally,in children with anti-GQ1b antibody syndrome,extraocular muscle paralysis is the initial symptom. However, anti-GQ1b antibody syndrome with vomiting as the initial symptom followed by abnormal gait has not been reported. CASE PRESENTATION: We reported a case of anti-GQ1b antibody syndrome with vomiting as the initial symptom, followed by abnormal gait. One day after vomiting, the child developed abnormal gait, which primarily manifested as a slight tilt of the upper body during walking as well as an opening and swaying of the legs at fast walking paces,then progressively aggravated, and finally he could not stand on his own.In the auxiliary examination, cerebrospinal fluid routine,biochemical and metagenomic Next-Generation Sequencing (DNA and RNA), brain + spinal cord contrast magnetic resonance imaging (MRI),magnetic Resonance angiography (MRA) and diffusion-weighted image (DWI), hip and knee joint ultrasound showed normal results. Anti-GQ1b antibody syndrome was not confirmed until the positive anti-GQ1b IgG antibody was detected in the serum. After treatment with intravenous immunoglobulin (IVIG) and glucocorticoid, the child recovered well, and a 3-month outpatient follow-up showed that the child was able to walk normally. CONCLUSIONS: There are no previous reports of anti-GQ1b antibody syndrome with vomiting as the initial symptom, followed by abnormal gait. Therefore, this valuable case contributes to expanding the database of clinical manifestation of anti-GQ1b antibody syndrome, so as to improve pediatricians' awareness about such rare diseases and reduce misdiagnosis.


Assuntos
Síndrome de Guillain-Barré , Síndrome de Miller Fisher , Oftalmoplegia , Criança , Humanos , Síndrome de Guillain-Barré/complicações , Imunoglobulinas Intravenosas/uso terapêutico , Oftalmoplegia/diagnóstico , Oftalmoplegia/etiologia , Vômito/complicações , Gangliosídeos
20.
Mol Biol Rep ; 51(1): 46, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158508

RESUMO

The success of Angiotensin II receptor blockers, specifically Angiotensin II type 1 receptor (AT1R) antagonists as antihypertensive drug emphasizes the involvement of AT1R in Essential hypertension. The structural insights and mutational studies of Ang II-AT1R have brought about the vision to design Ang II analogs that selectively activate the pathways with beneficial and cardioprotective effects such as cell survival and hinder the deleterious effects such as hypertrophy and cell death. AT1R belongs to G-protein coupled receptors and is regulated by G-protein coupled receptor kinases (GRKs) that either uncouples Gq protein for receptor desensitization or phosphorylate C-terminus to recruit ß-arrestin for internalization of the receptor. The interaction of GRKs with ligand activated AT1R induces conformational changes and signal either Gq dependent or Gq independent pathways. These interactions might explain the complex regulatory mechanisms and offer promising ideas for hypertension therapeutics. This article reviews the functional role of AT1R, organization of GRK genes and regulation of AT1R by GRKs that play significant role in desensitization and internalization of the receptors.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Humanos , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , Pressão Sanguínea , Hipertensão/genética , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa