RESUMO
The blood-follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.
Assuntos
Líquido Folicular , Oligoelementos , Boro/metabolismo , Feminino , Fertilização in vitro/métodos , Humanos , Imunidade , Masculino , Oócitos/metabolismo , Oligoelementos/metabolismoRESUMO
The co-existence of volatile chlorinated hydrocarbons (VCHs) and nitrate pollution in groundwater is prominent, but how nitrate exposure affects weak-electrical stimulated bio-dechlorination activity of VCH is largely unknown. Here, by establishing weak-electrical stimulated trichloroethylene (TCE) dechlorination systems, the influence on TCE dechlorination by exposure to the different concentrations (25-100 mg L-1) of nitrate was investigated. The existence of nitrate in general decreased TCE dechlorination efficiency to varying degrees, and the higher nitrate concentration, the stronger the inhibitory effects, verified by the gradually decreased transcription levels of tceA. Although the TCE dechlorination kinetic rate constant decreased by 36% the most, under all nitrate concentration ranges, TCE could be completely removed within 32 h and no difference in generated metabolites was found, revealing the well-maintained dechlorination activity. This was due to the quickly enriched bio-denitrification activity, which removed nitrate completely within 9 h, and thus relieved the inhibition on TCE dechlorination. The obvious bacterial community structure succession was also observed, from dominating with dechlorination genera (e.g., Acetobacterium, Eubacterium) to dominating with both dechlorination and denitrification genera (e.g., Acidovorax and Brachymonas). The study proposed the great potential for the in situ simultaneous denitrification and dehalogenation in groundwater contaminated with both nitrate and VCHs.
Assuntos
Água Subterrânea , Hidrocarbonetos Clorados , Tricloroetileno , Biodegradação Ambiental , Estimulação Elétrica , Água Subterrânea/química , Nitratos , Tricloroetileno/químicaRESUMO
This article exploits a new approach for synthesis of polysaccharide-based grafted sodium styrene sulfonate (SSS) super absorbent hydrogels (SAHs) in aqueous solution by γ-radiation under ambient conditions. Important optimal conditions for preparation of hydrogels with the best swelling ratio, such as gamma irradiation dose and the ratio of feed composition have been discussed. Characterization techniques such as the SEM/EDS, FTIR and DSC were used in describing the newly prepared hydrogels. The FTIR gave characteristic peaks for -SO3Na group at 1042 and 988â¯cm-1, showing successful grafting of SSS onto the polysaccharide base material. The dependence of swelling behaviors in various pH solutions and salts solutions were investigated in detail. The prepared hybrid hydrogel showed most optimum swelling capacity at neutral pH whereas equilibrium swelling of SAHs was achieved within 5â¯h. The swelling of SAHs influenced obviously to metal ion removal percentage in solution.