Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(28): e2310339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38295011

RESUMO

The modulation of the coordination environment of single atom catalysts (SACs) plays a vital role in promoting CO2 reduction reaction (CO2RR). Herein, N or B doped Fe-embedded graphyne (Fe-GY), Fe-nXGYm (n = 1, 2, 3; X = N, B; m = 1, 2, 3), are employed as probes to reveal the effect of the coordination environment engineering on CO2RR performance via heteroatom doping in SACs. The results show that the doping position and number of N or B in Fe-GY significantly affects catalyst activity and CO2RR product selectivity. In comparison, Fe-1NGY exhibits high-performance CO2RR to CH4 with a low limiting potential of -0.17 V, and Fe-2NGY3 is demonstrated as an excellent CO2RR electrocatalyst for producing HCOOH with a low limiting potential of -0.16 V. With applied potential, Fe-GY, Fe-1NGY, and Fe-2NGY3 exhibit significant advantages in CO2RR to CH4 while hydrogen evolution reaction is inhibited. The intrinsic essence analysis illustrates that heteroatom doping modulates the electronic structure of active sites and regulates the adsorption strength of the intermediates, thereby rendering a favorable coordination environment for CO2RR. This work highlights Fe-nXGYm as outstanding SACs for CO2RR, and provides an in-depth insight into the intrinsic essence of the promotion effect from heteroatom doping.

2.
Small ; : e2402083, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140166

RESUMO

Graphyne nanoscrolls (GNSs) have attracted significant research interest because of their wide-ranging applications. However, the production of GNSs via a self-scrolling approach is environment dependent. Here, molecular dynamics simulations are conducted to evaluate the self-scrolling behavior of an α-graphyne (α-GY) ribbon on a carbon nanotube (CNT) within various multiphysical environments, accounting for the interactions among temperature, electric field, and argon gas. The results demonstrate that the fabrication of an α-GNS lies in the interplay of van der Waals (vdW) forces among the components in a vacuum. Notably, the α-GY ribbon is easier to scroll onto a thicker CNT. The electric field attenuates the vdW interaction, necessitating thicker CNTs for successful self-scrolling under a stronger electric field. In argon, both the vdW interaction and nanoscale pore contribute to the overlap formation. At 300 K, increasing argon density prolongs the time required for α-GNS formation, with self-scrolling failing beyond a critical gas density threshold. Moreover, the self-scrolling becomes easier at higher temperatures. In multiphysical environments, the interplay between the electric field and the gas density dictates the self-scrolling at low temperatures. Finally, reasonable suggestions are given for successful self-scrolling. The conclusions offer valuable insights for the practical fabrication of α-GNS.

3.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295413

RESUMO

We unveil that the holey graphyne (HGY), a two-dimensional carbon allotrope where benzene rings are connected by two -C≡C- bonds fabricated recently in a bottom-up way, exhibits topological electronic states. Using first-principles calculations and Wannier tight-binding modeling, we discover a higher-order topological invariant associated withC2symmetry of the material, and show that the resultant corner modes appear in nanoflakes matching to the structure of precursor reported previously, which are ready for direct experimental observations. In addition, we find that a band inversion between emergentg-like andh-like orbitals gives rise to a nontrivial topology characterized byZ2invariant protected by an energy gap as large as 0.52 eV, manifesting helical edge states mimicking those in the prominent quantum spin Hall effect, which can be accessed experimentally after hydrogenation in HGY. We hope these findings trigger interests towards exploring the topological electronic states in HGY and related future electronics applications.

4.
J Fluoresc ; 34(2): 945-960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37436616

RESUMO

In this study, we investigated the reactivity of γ-graphyne (Gp) and its derivatives, Gp-CH3, Gp-COOH, Gp-CN, Gp-NO2, and Gp-SOH, for the removal of toxic heavy metal ions (Hg+ 2, Pb+ 2, and Cd+ 2) from wastewater. From the analysis of the optimized structures, it was observed that all the compounds exhibited planar geometry. The dihedral angles (C9-C2-C1-C6 and C9-C2-C1-C6) were approximately 180.00°, indicating planarity in all molecular arrangements. To understand the electronic properties of the compounds, the HOMO (EH) and LUMO (EL) energies were calculated, and their energy gaps (Eg) were determined. The EH and EL values ranged between - 6.502 and - 8.192 eV and - 1.864 and - 3.773 eV, respectively, for all the compounds. Comparing the EH values, Gp-NO2 exhibited the most stable HOMO, while Gp-CH3 had the least stable structure. In terms of EL values, Gp-NO2 had the most stable LUMO, while Gp-CH3 was the least stable. The Eg values followed the order: Gp-NO2 < Gp-COOH < Gp-CN < Gp-SOH < Gp-CH3 < Gp, with Gp-NO2 (4.41 eV) having the smallest energy gap. The density of states (DOS) analysis showed that the shape and functional group modifications affected the energy levels. Functionalization with electron-withdrawing (CN, NO2, COOH, SOH) or electron-donating (CH3) groups reduced the energy gap. To specifically target the removal of heavy metal ions, the Gp-NO2 ligand was selected for its high binding energy. Complexes of Gp-NO2-Cd, Gp-NO2-Hg, and Gp-NO2-Pb were optimized, and their properties were analyzed. The complexes were found to be planar, with metal-ligand bond distances within the range of 2.092→3.442 Å. The Gp-NO2-Pb complex exhibited the shortest bond length, indicating a stronger interaction due to the smaller size of Pb+ 2. The computed adsorption energy values (Eads) indicated the stability of the complexes, with values ranging from - 0.035 to -4.199 eV. Non-covalent interaction (NCI) analysis was employed to investigate intermolecular interactions in Gp-NO2 complexes. The analysis revealed distinct patterns of attractive and repulsive interactions, providing valuable insights into the binding preferences and steric effects of heavy metals.

5.
Small ; 19(11): e2205533, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581562

RESUMO

The 2D graphyne-related scaffolds linked by carbon-carbon triple bonds have demonstrated promising applications in the field of catalysis and energy storage due to their unique features including high conductivity, permanent porosity, and electron-rich properties. However, the construction of related scaffolds is still mainly limited to the cross-linking of CaC2 with multiple substituted aromatic halogens and there is still a lack of efficient methodology capable of introducing high-concentration heteroatoms within the architectures. The development of alternative and facile synthesis procedures to afford nitrogen-abundant graphyne materials is highly desirable yet challenging in the field of energy storage, particularly via the facile mechanochemical procedure under neat and ambient conditions. Herein, graphyne materials with abundant nitrogen-containing species (nitrogen content of 6.9-29.3 wt.%), tunable surface areas (43-865 m2  g-1 ), and hierarchical porosity are produced via the mechanochemistry-driven pathway by deploying highly electron-deficient multiple substituted aromatic nitriles as the precursors, which can undergo cross-linking reaction with CaC2 to afford the desired nitrogen-doped graphyne scaffolds efficiently. Unique structural features of the as-synthesized materials contributed to promising performance in supercapacitor-related applications, delivering high capacitance of 254.5 F g-1 at 5 mV s-1 , attractive rate performance, and good long-term stability.

6.
Chemphyschem ; 24(1): e202200548, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36068988

RESUMO

Ever since the inception of anion-π interactions, their nature and functional relevance have intrigued researchers. We address the twin challenge of elucidation of the role of extended conjugation and design of all-carbon neutral anion receptors by computations on the anion-π complexes of the halide ions with graphynes. Leveraging on the extended π-conjugation effects, we unfurl the functional relevance of graphynes as anion receptors using descriptors such as electrostatic potential, quadrupole moments, molecular polarizabilities and binding energies. Further, employing natural energy decomposition analysis, we assert that anion-π interactions are not merely dominated by electrostatic interactions. The polarization components do indeed play a crucial role in governing the binding of the anions to the graphynes.


Assuntos
Ânions , Ânions/química , Termodinâmica
7.
Nanotechnology ; 34(17)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36762606

RESUMO

Catechol is a toxic biomolecule due to its low degradability to the ecosystem and unpredictable impact on human health. In this work, we have investigated the catechol sensing properties of pristine and transition metal (Ag, Au, Pd, and Ti) decoratedγ-graphyne (GY) systems by employing the density functional theory and first-principles molecular dynamics approach. Simulation results revealed that Pd and Ti atom is more suitable than Ag and Au atom for the decoration of the GY structure with a large charge transfer of 0.29e and 1.54e from valence d-orbitals of the Pd/Ti atom to the carbon-2p orbitals of GY. The GY + Ti system offers excellent electrochemical sensing towards catechol with charge donation of 0.14e from catechol O-p orbitals to Ti-d orbitals, while the catechol molecule is physisorbed to pristine GY with only 0.04e of charge transfer. There exists an energy barrier of 5.19 eV for the diffusion of the Ti atom, which prevents the system from metal-metal clustering. To verify the thermal stability of the sensing material, we have conducted the molecular dynamics simulations at 300 K. We have reported feasible recovery times of 2.05 × 10-5s and 4.7 × 102s for sensing substrate GY + Pd and GY + Ti, respectively, at 500 K of UV light.

8.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833972

RESUMO

Graphyne is a material that has unique mechanical properties, but little is known about how these properties change when the material has holes. In this work, the effect of hole geometry, considering circular, triangle, and rhombus hole configurations, on the mechanical nonlinear response of γ-graphyne structures is studied. Graphyne, graphdiyne, graphyne-3, and graphyne-4 structures are under investigation. An efficient nonlinear finite element analysis (FEA) method is adequately implemented under large deformations for this purpose. The study varied the size and shape of the holes to understand how these changes affect the nanostructure's mechanical response. The results indicate that the hole geometry significantly impacts the mechanical nonlinear response of γ-graphyne structures. The holes' size and shape affect the structures' elastic behavior, deformation, and strength. The findings can be used to optimize the design of γ-graphyne structures for specific mechanical applications. The study highlights the importance of considering the hole geometries in the design and fabrication of these materials.


Assuntos
Estresse Mecânico , Análise de Elementos Finitos
9.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764373

RESUMO

Materials made of graphyne, graphyne oxide, and graphyne quantum dots have drawn a lot of interest due to their potential uses in medicinal nanotechnology. Their remarkable physical, chemical, and mechanical qualities, which make them very desirable for a variety of prospective purposes in this area, are mostly to blame for this. In the subject of mathematical chemistry, molecular topology deals with the algebraic characterization of molecules. Molecular descriptors can examine a compound's properties and describe its molecular topology. By evaluating these indices, researchers can predict a molecule's behavior including its reactivity, solubility, and toxicity. Amidst the captivating realm of carbon allotropes, γ-graphyne has emerged as a mesmerizing tool, with exquisite attention due to its extraordinary electronic, optical, and mechanical attributes. Research into its possible applications across numerous scientific and technological fields has increased due to this motivated attention. The exploration of molecular descriptors for characterizing γ-graphyne is very attractive. As a result, it is crucial to investigate and predict γ-graphyne's molecular topology in order to comprehend its physicochemical characteristics fully. In this regard, various characterizations of γ-graphyne and zigzag γ-graphyne nanoribbons, by computing and comparing distance-degree-based topological indices, leap Zagreb indices, hyper leap Zagreb indices, leap gourava indices, and hyper leap gourava indices, are investigated.

10.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175298

RESUMO

Based on the DFT calculations, two-dimensional (2D) R-graphyne has been demonstrated to have high stability and good conductivity, which can be conducive to the relevant electrocatalytic activity of the material. Different from the poor graphene, R-graphyne, which is completely composed of anti-aromatic structural units, can exhibit certain HER catalytic activity. In addition, doping the TM atoms in Group VIIIB can be considered an effective strategy to enhance the HER catalytic activity of R-graphyne. Particularly, Fe@R-graphyne, Os@R-graphyne, Rh@R-graphyne and Ir@R-graphyne can exhibit higher HER catalytic activities due to the formation of more active sites. Usually, the shorter the distance between the TM and C atoms is, the better the HER activity of the C-site is. Furthermore, doping Ni and Rh atoms of Group VIIIB can significantly improve the OER catalytic performance of R-graphyne. It can be found that ΔGO* can be used as a good descriptor for the OER activities of TM@R-graphyne systems. Both Rh@R-graphyne and Ni@R-graphyne systems can exhibit bifunctional electrocatalytic activities for HER/OER. In addition, all the relevant catalytic mechanisms are analyzed in detail. This work not only provides nonprecious and highly efficient HER/OER electrocatalysts, but also provides new ideas for the design of carbon-based electrocatalysts.

11.
Chemphyschem ; 23(9): e202100900, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322523

RESUMO

Using extensive first principles protocols, a systematic investigation is performed to probe the oxygen reduction reaction (ORR) mechanism on nitrogen (N) doped graphynes (Gys, e. g. αGy, ßGy, γGy and 6,6,12Gy) and graphdiyne (Gdy) in alkaline medium. We considered both associative and dissociative pathways, as well as two distinct intermediate forks for each of them depending on the first protonation site(s). Following the dissociative approach, the activation energy to form an O2 dissociated configuration is found as a function of the distances migrated by the O atoms over the catalyst surface and the amount of charge transferred from the C atoms linked to N. N doped αGy and 6,6,12Gy emerged as the best electrocatalyst comparing both pathways having lowest overpotentials of 0.88 and 0.82 V, respectively. The rate-limiting steps for the two different intermediate routes are observed to be dependent on the first protonation site(s) and related to the desorption of the OH radical from the sp hybridized C atom site(s) linked to N. Hence, the OH adsorption energy is identified as a descriptor for the efficiency of the ORR for the considered systems. The stabilities of the ORR intermediates are further elaborated in terms of pH and electrode potential.


Assuntos
Grafite , Nitrogênio , Humanos , Oxirredução , Oxigênio
12.
Nanotechnology ; 34(4)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301676

RESUMO

Graphyne nanotube (GNT), as a promising one-dimensional carbon material, attracts extensive attention in recent years. However, the synthesis of GNT is still challenging even in the laboratory. This study reveals the feasibility of fabricating a GNT by self-assembling a monolayer graphyne (GY) ribbon on a carbon nanotube (CNT) via theoretical and numerical analysis. Triggered by the van der Waals force from the CNT, a GY ribbon near the tube first winds upon the tube and then conditionally self-assembles to form a GNT. The self-assembly process and result are heavily influenced by the ambient temperature, which indicates the thermal vibration of the nanosystem. Molecular dynamic simulation results address the temperature range conducive to successful self-assembly. Different types of GNTs, e.g.α-,ß-, andγ-GNTs with specified chirality (armchair, zigzag, and chiral), length, and radius, can be obtained via self-assembly by controlling the geometry of the GY ribbons and temperature. The present theoretical understanding is helpful for fabricating GNTs with predefined morphology.

13.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36240696

RESUMO

Lithium-ion batteries (LIBs) have emerged as a technological game-changer. Due to the rising price of lithium and the environmental concerns LIBs pose, their use is no longer viable. Sodium (Na) may be the best contender among the alternatives for replacing lithium. Conventional graphite has a limited capacity for Na storage. Hence,α-graphyne, an allotrope of carbon, was studied here as a potential anode material for Na-ion batteries (NIBs), employing density functional theory. In-plane Na atom adsorption results in a semi-metallic to metallic transition ofα-graphyne. Electronic transport calculations show an increase in current after Na adsorption in graphyne. The successive adsorption of Na atoms on the surface of graphyne leads to a theoretical capacity of 1395.89 mA h g-1, which is much greater than graphite. The average open circuit voltage is 0.81 V, which is an ideal operating voltage for NIBs. Intra- and inter-hexagon Na diffusions have very low energy barriers of 0.18 eV and 0.96 eV, respectively, which ensure smooth operation during charge/discharge cycles. According to this study, theα-graphyne monolayer thus has the potential to be employed as an anode in NIBs.

14.
Nanotechnology ; 33(40)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35767943

RESUMO

Expanding pollution and rapid consumption of natural reservoirs (gas, oil, and coal) led humankind to explore alternative energy fuels like hydrogen fuel. Solid-state hydrogen storage is most desirable because of its usefulness in the onboard vehicle. In this work, we explored the yttrium decorated ultra porous, two-dimensional holey-graphyne for hydrogen storage. Using the first principles density functional theory simulations, we predict that yttrium doped holey graphyne can adsorb up to seven hydrogen molecules per yttrium atom resulting in a gravimetric hydrogen weight percentage of 9.34, higher than the target of 6.5 wt% set by the US Department of Energy. The average binding energy per H2and desorption temperature come out to be -0.34 eV and ∼438 K, respectively. Yttrium atom is bonded strongly on HGY sheet due to charge transfer from Y 4d orbital to C 2p orbital whereas the adsorption of H2molecule on Y is due to Kubas-type of interactions involving charge donation from H 1s orbital to Y 3d orbital and back donation with net charge gain by H 1s orbital. Furthermore, sufficient energy barriers for the metal atom diffusion have been found to prevent the clustering of transition metal (yttrium) on HGY sheet. The stability of the system at higher temperatures is analyzed usingAb-initiomolecular dynamics (AIMD) method, and the system is found to be stable at room and the highest desorption temperature. Stability of the system at higher temperatures, presence of adequate diffusion energy barrier to prevent metal-metal clustering, high gravimetric wt% of H2uptake with suitable binding energy, and desorption temperature signifies that Y doped HGY is a promising material to fabricate high capacity hydrogen storage devices.

15.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144692

RESUMO

The ability to remove carbon dioxide from gaseous mixtures is a necessary step toward the reduction of greenhouse gas emissions. As a contribution to this field of research, we performed a molecular dynamics study assessing the separation and adsorption properties of multi-layered graphtriyne membranes on gaseous mixtures of CO2, N2, and H2O. These mixtures closely resemble post-combustion gaseous products and are, therefore, suitable prototypes with which to model possible technological applications in the field of CO2 removal methodologies. The molecular dynamics simulations rely on a fairly accurate description of involved force fields, providing reliable predictions of selectivity and adsorption coefficients. The characterization of the interplay between molecules and membrane structure also permitted us to elucidate the adsorption and crossing processes at an atomistic level of detail. The work is intended as a continuation and a strong enhancement of the modeling research and characterization of such materials as molecular sieves for CO2 storage and removal.


Assuntos
Gases de Efeito Estufa , Simulação de Dinâmica Molecular , Adsorção , Dióxido de Carbono/química , Gases/química
16.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268829

RESUMO

In this study, a nonlinear, spring-based finite element approach is employed in order to predict the nonlinear mechanical response of graphyne structures under shear loading. Based on Morse potential functions, suitable nonlinear spring finite elements are formulated simulating the interatomic interactions of different graphyne types. Specifically, the four well-known types of γ-graphyne, i.e., graphyne-1 also known as graphyne, graphyne-2 also known as graphdiyne, graphyne-3, and graphyne-4 rectangular sheets are numerically investigated applying appropriate boundary conditions representing shear load. The obtained finite element analysis results are employed to calculate the in-plane shear stress-strain behaviour, as well as the corresponding mechanical properties as shear modulus and shear strength. Comparisons of the present graphyne shearing response predictions with other corresponding estimations are performed to validate the present research results.

17.
Nanotechnology ; 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33561848

RESUMO

Holey graphyne (HGY), a novel two-dementional 2D single-crystalline carbon allotrope, was recently synthesized by Castro-Stephens coupling reaction. The naturally existing uniform periodic holes in the 2D carbon-carbon network demonstrate its promising potential in the energy storage. Herein, we conducted density functional theory (DFT) calculation to predict the hydrogen storage capacity of HGY sheet. It is found the Li-decorated single-layer HGY can serve as a promising candidate for hydrogen storage. Our DFT calculations demonstrate that Li atoms can bind strongly to the HGY sheet without the formation of Li clusters, and each Li atom can anchor four H2 molecules with the average adsorption energy about 0.22 eV/H2. The largest hydrogen storage capacity of the doped HGY sheet can reach as high as 12.8 wt%, largely surpassing the target of the U. S. DOE (9 wt%), showing the Li/HGY complex is an ideal hydrogen storage material at ambient conditions. In addition, we investigate the polarization mechanism of the storage media and find that the polarization is originated from both the electric field induced by the ionic Li decorated on the HGY and the weak polarized hydrogen molecules dominated the H2 adsorption process.

18.
Nanotechnology ; 32(40)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34157684

RESUMO

In this paper, the structural stability, electronic, optical, mechanical, and thermal properties of diphenylacetylene-based graphyne (DPAG) nanosheet are investigated using first-principle calculations based on density functional theory (DFT). The absolute value of the calculated cohesive energy reveals that DPAG nanosheet is a structurally stable two-dimensional material. Also, in the results of phononic dispersion curves, the absence of imaginary frequencies confirms the dynamic stability of this novel material. In addition, the theoretical electronic band structure and density of states reveal the semiconducting nature of DPAG nanosheet. The optical analysis shows that the first absorption peaks of the imaginary and real parts of dielectric constants along the in-plane and out-of-plane polarizations of DPAG monolayer occur in the visible range of the electromagnetic spectrum. On the other hand, the DPAG nanosheet exhibits orthotropic elastic behavior with four independent constants comparable with the data of similar materials available in the literature. Moreover, DFT calculations of the lattice thermal conductivity of DPAG reveals an anomalously very low thermal conductivity of this nanosheet showing its perfect thermal non-conductivity. Our results provide deep insights into the potential applications of DPAG nanosheet for the design of new optoelectronic/nanoelectronic devices.

19.
Nanotechnology ; 32(48)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34380128

RESUMO

By means of quotient-graph associated crystal prediction method, a new graphyne allotrope with unique Dirac nodal grid state is reported in this work. It is named as 191-E24Y24-1 according to its hexagonal lattice (with P6/mmm symmetry, No. 191) containing 24 sp2-hybridized carbon atoms and 24 sp-hybridized ones. The first-principles results show that the total energy of 191-E24Y24-1 is more favorable than that of recent synthesizedß-graphdiyne and carbon ene-yne. It is also demonstrated to be dynamically, thermally, and mechanically stable. Interestingly, the 191-E24Y24-1 harbors intrinsic semimetal features showing intriguing hexagonal Dirac nodal grid state in the reciprocal space. Such unique electronic state is stable against small external tensile strains, and it is tunable under compression strains which will transform to new triangle Dirac nodal grid state. Moreover, a new metastable graphyne allotrope named 191-E12Y36-4 with Dirac nodal loop state is also observed in the process of stretching 191-E24Y24-1 with large tensile strains. The results presented in this work reveal two novel graphyne allotropes with exotic electronic properties. These discoveries are not only physical interesting, but also provide potential material candidates for carbon-based high performance electronic nanodevices.

20.
Small ; 16(10): e1907365, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32053264

RESUMO

High energy density is the major demand for next-generation rechargeable batteries, while the intrinsic low alkali metal adsorption of traditional carbon-based electrode remains the main challenge. Here, the mechanochemical route is proposed to prepare nitrogen doped γ-graphyne (NGY) and its high capacity is demonstrated in lithium (LIBs)/sodium (SIBs) ion batteries. The sample delivers large reversible Li (1037 mAh g-1 ) and Na (570.4 mAh g-1 ) storage capacities at 100 mA g-1 and presents excellent rate capabilities (526 mAh g-1 for LIBs and 180.2 mAh g-1 for SIBs) at 5 A g-1 . The superior Li/Na storage mechanisms of NGY are revealed by its 2D morphology evolution, quantitative kinetics, and theoretical calculations. The effects on the diffusion barriers (Eb ) and adsorption energies (Ead ) of Li/Na atoms in NGY are also studied and imine-N is demonstrated to be the ideal doping format to enhance the Li/Na storage performance. Besides, the Li/Na adsorption routes in NGY are optimized according to the experimental and the first-principles calculation results. This work provides a facile way to fabricate high capacity electrodes in LIBs/SIBs, which is also instructive for the design of other heteroatomic doped electrodes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa