Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(3): 817-831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013592

RESUMO

Stomata are microscopic pores at the surface of plant leaves that facilitate gaseous diffusion to support photosynthesis. The guard cells around each stoma regulate the pore aperture. Plants that carry out C4 photosynthesis are usually more resilient than C3 plants to stress, and their stomata operate over a lower dynamic range of CO2 within the leaf. What makes guard cells of C4 plants more responsive than those of C3 plants? We used gas exchange and electrophysiology, comparing stomatal kinetics of the C4 plant Gynandropsis gynandra and the phylogenetically related C3 plant Arabidopsis thaliana. We found, with varying CO2 and light, that Gynandropsis showed faster changes in stomata conductance and greater water use efficiency when compared with Arabidopsis. Electrophysiological analysis of the dominant K+ channels showed that the outward-rectifying channels, responsible for K+ loss during stomatal closing, were characterised by a greater maximum conductance and substantial negative shift in the voltage dependence of gating, indicating a reduced inhibition by extracellular K+ and enhanced capacity for K+ flux. These differences correlated with the accelerated stomata kinetics of Gynandropsis, suggesting that subtle changes in the biophysical properties of a key transporter may prove a target for future efforts to engineer C4 stomatal kinetics.


Assuntos
Arabidopsis , Magnoliopsida , Estômatos de Plantas/fisiologia , Dióxido de Carbono , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Arabidopsis/fisiologia , Gases
2.
Am J Bot ; 110(7): e16193, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210747

RESUMO

PREMISE: Flowering plants have evolved a vast array of floral features involved in plant-pollinator interactions. A feature that seemingly increases the chance of pollen transfer is the androgynophore, a stalk-like structure that raises the reproductive organs of the flower. However, little is known about the developmental and genetic basis of this structure despite its presence in multiple, distantly related taxa. Here, we address this gap by investigating Gynandropsis gynandra (Cleomaceae), a species with a prominent androgynophore. METHODS: We combined morphological and anatomical analyses with a comparative transcriptomic study to provide a detailed description of the androgynophore throughout development, examine global gene expression patterns, and identify candidate genes putatively involved in androgynophore elongation. RESULTS: The radially symmetric androgynophore of G. gynandra rapidly lengthens primarily via cell elongation. Despite its structural uniformity, androgynophore development is characterized by complex gene expression patterns including differential expression of floral organ identity genes and genes associated with organ development and growth in Arabidopsis thaliana. CONCLUSIONS: Our morphological characterizations and high-quality transcriptome for G. gynandra suggest that the androgynophore is a novel structure formed via elaboration of both the receptacle and base of reproductive organs because it is structurally like an elongated internode but expresses the genetic repertoire typically associated with the reproductive organs. The drastic increase in cell length and uniform structure elevates the androgynophore as a potentially powerful model for cell elongation.


Assuntos
Arabidopsis , Magnoliopsida , Flores , Magnoliopsida/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
3.
Planta ; 250(3): 933-947, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30911886

RESUMO

MAIN CONCLUSION: The variability in nutrient content and morphology in Gynandropsis gynandra is associated with the geographic origin of the accessions and provides a basis for breeding for higher levels of vitamin C, carotenoids or tocopherols in higher-yielding cultivars. We examined the variation in carotenoids, tocopherols and ascorbic acid as well as morphological traits in a worldwide germplasm of 76 accessions of the orphan leafy vegetable Gynandropsis gynandra (Cleomaceae) using greenhouse experiments and high-performance liquid chromatography analysis. The levels of carotenoids and tocopherols accumulating in the leaves varied significantly across accessions and were linked with the geographical origin and morphological variation. The main carotenoids included lutein, ß-carotene, α-carotene and violaxanthin. A twofold to threefold variation was observed for these compounds. The main tocopherols detected were α-tocopherol and γ-tocopherol with a 20-fold variation. A ninefold variation in vitamin C concentration and independent of geographical origin was observed. Overall, the accessions were grouped into three clusters based on variation in nutrient content and morphology. West African accessions were short plants with small leaves and with high tocopherol contents and relatively low carotenoid contents, Asian accessions were short plants with broad leaves and with relatively low carotenoid and high tocopherol contents, while East-Southern African plants were tall with high contents of both carotenoids and chlorophylls and low tocopherol contents. Carotenoids were positively correlated with plant height as well as foliar and floral traits but negatively correlated with tocopherols. The absence of a significant correlation between vitamin C and other traits indicated that breeding for high carotenoids or tocopherols content may be coupled with improved leaf yield and vitamin C content. Our study provides baseline information on the natural variation available for traits of interest for breeding for enhanced crop yield and nutrient content in Gynandropsis gynandra.


Assuntos
Cleome/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Valor Nutritivo , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cleome/anatomia & histologia , Cleome/metabolismo , Produção Agrícola , Produtos Agrícolas/anatomia & histologia , Geografia , Melhoramento Vegetal , Característica Quantitativa Herdável , Tocoferóis/metabolismo , Vitaminas/metabolismo
4.
Mitochondrial DNA B Resour ; 6(7): 1909-1910, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34179471

RESUMO

Gynandropsis gynandra (L.) Briquet is a monoecious herb species in the family Cleomaceae. It is an important commercial crop with medicinal and nutritional values. Here, we sequenced, assembled, and analyzed the complete chloroplast genome of G. gynandra. The circular genome is 158,152 bp in size, consisting of two copies of inverted repeat (IR) regions of 26,181 bp, one large single-copy (LSC) region of 87,242 bp, and one small single-copy (SSC) region of 18,548 bp. The overall GC content was 35.81%. A total of 131 genes were annotated, including 37 tRNA genes, 87 protein-coding genes, and seven rRNA genes. Phylogenetic analysis based on 10 chloroplast genome sequences indicated that G. gynandra was more closely related to Tarenaya hassleriana.

5.
Phytochemistry ; 178: 112468, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771676

RESUMO

The improvement and promotion of leafy vegetables, used for both food and medicine, benefits greatly from detailed knowledge of their health-promoting specialised metabolites. In the present study, we investigated the global metabolite variation in the leaves of 48 accessions of the leafy vegetable Gynandropsis gynandra using two complementary analytical platforms: liquid-chromatography mass spectrometry (LC-MS) for an untargeted comparison of non-volatile semi-polar metabolites and gas-chromatography mass spectrometry (GC-MS) for an untargeted comparison of volatile metabolites. Our results revealed large variation in 936 semi-polar compounds including flavonoids, terpene glycosides, glucosinolates and various phenolic compounds. Unsupervised multivariate analysis indicated the variation in levels of the semi-polar metabolites was mainly driven by geography, with accessions from both West Africa and Asia forming a group clearly separated from East African accessions. Detected volatile metabolites included various sesquiterpenes, aldehydes, ketones, and sulphur-containing isothiocyanates. Variation in these compounds was however not geographically specific, but most likely linked to the taste and aroma of the leaves. The relative abundance in glucosinolates and isothiocyanates in the leaves allowed the clustering of accessions into two main groups that could be used for further plant-herbivore interaction studies. This study revealed both the broad spectrum of phytochemicals present in Gynandropsis gynandra leaves and the substantial variation in metabolite profiles among accessions from different regions of the world. Our results provide a basis for the development of breeding programs aiming at improving the levels of specialised metabolites in this tropical leafy vegetable for increased resistance against pests and diseases and improved human health.


Assuntos
Folhas de Planta , Verduras , África , África Ocidental , Ásia , Humanos
6.
Indian J Clin Biochem ; 20(2): 170-3, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23105554

RESUMO

The study was aimed at presence of specific IgE antibody levelsinvitro to the identified antigen. Based on positive skin test with Gynandropsis gynandra and elevated levels of total IgE (>325 IU/ml) 104 patients were selected. Healthy, asymptomatic individuals (25) with low total IgE (<325 IU/ml) were included as controls. The mean OD values by ELISA for specific IgE were 0.67±0.21, 0.57±0.18 and 0.56±0.18 with whole pollen antigen, 46-37 kD fraction and 36-32 kD fraction, respectively. The specificity and sensitivity between skin test positivity with whole pollen antigen verses fraction with mol.wt 46-37 kD was 90% and 90% and for fraction with mol.wt 36-32 kD was found to be 81.1% and 89.4%. The clusters with molecular weights 46-37 kD and 36-32 kD may be useful inin vitro diagnostic test. Fractions within these clusters need to be identified for a higher specificity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa