Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
J Physiol ; 602(9): 2107-2126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568869

RESUMO

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Assuntos
Segmento Inicial do Axônio , Reflexo H , Neurônios Motores , Ratos Sprague-Dawley , Animais , Neurônios Motores/fisiologia , Ratos , Masculino , Reflexo H/fisiologia , Segmento Inicial do Axônio/fisiologia , Aprendizagem/fisiologia , Medula Espinal/fisiologia , Medula Espinal/citologia , Axônios/fisiologia , Plasticidade Neuronal/fisiologia , Condicionamento Operante/fisiologia , Anquirinas/metabolismo
2.
Exp Physiol ; 109(5): 754-765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488681

RESUMO

This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H-reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing and placement of the foot during walking. We hypothesized that weight manipulation would alter H-reflex magnitude, footfall and lower body kinematics. Twenty healthy participants were recruited and subjected to various weight-loading conditions. The H-reflex, evoked by stimulating the tibial nerve, was assessed from the dominant leg during walking. Gait was evaluated under five conditions: body weight, 20% and 40% additional body weight, and 20% and 40% reduced body weight (via a harness). Participants walked barefoot on a treadmill under each condition, and the timing of electrical stimulation was set during the stance phase shortly after the heel strike. Results show that different weight-loading conditions significantly impact the timing and placement of the foot and gait stability. Weight reduction led to a 25% decrease in double limb support time and an 11% narrowing of step width, while weight addition resulted in an increase of 9% in step width compared to body weight condition. Furthermore, swing time variability was higher for both the extreme weight conditions, while the H-reflex reduced to about 45% between the extreme conditions. Finally, the H-reflex showed significant main effects on variability of both stance and swing phases, indicating that muscle-motor excitability might serve as feedback for enhanced regulation of gait dynamics under challenging conditions.


Assuntos
Marcha , Reflexo H , Caminhada , Suporte de Carga , Humanos , Marcha/fisiologia , Reflexo H/fisiologia , Masculino , Adulto , Feminino , Suporte de Carga/fisiologia , Fenômenos Biomecânicos/fisiologia , Adulto Jovem , Caminhada/fisiologia , Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Nervo Tibial/fisiologia , Eletromiografia , Pé/fisiologia , Adaptação Fisiológica/fisiologia , Neurônios Motores/fisiologia , Peso Corporal/fisiologia
3.
Muscle Nerve ; 69(3): 303-312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220221

RESUMO

INTRODUCTION/AIMS: In amyotrophic lateral sclerosis (ALS), the role of spinal interneurons in ALS is underrecognized. We aimed to investigate pre- and post-synaptic modulation of spinal motor neuron excitability by studying the H reflex, to understand spinal interneuron function in ALS. METHODS: We evaluated the soleus H reflex, and three different modulation paradigms, to study segmental spinal inhibitory mechanisms. Homonymous recurrent inhibition (H'RI ) was assessed using the paired H reflex technique. Presynaptic inhibition of Ia afferents (H'Pre ) was evaluated using D1 inhibition after stimulation of the common peroneal nerve. We also studied inhibition of the H reflex after cutaneous stimulation of the sural nerve (H'Pos ). RESULTS: Fifteen ALS patients (median age 57.0 years), with minimal signs of lower motor neuron involvement and good functional status, and a control group of 10 healthy people (median age 57.0 years) were studied. ALS patients showed reduced inhibition, compared to controls, in all paradigms (H'RI 0.35 vs. 0.11, p = .036; H'Pre 1.0 vs. 5.0, p = .001; H'Pos 0.0 vs. 2.5, p = .031). The clinical UMN score was a significant predictor of the amount of recurrent and presynaptic inhibition. DISCUSSION: Spinal inhibitory mechanisms are impaired in ALS. We argue that hyperreflexia could be associated with dysfunction of spinal inhibitory interneurons. In this case, an interneuronopathy could be deemed a major feature of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Pessoa de Meia-Idade , Reflexo H/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético , Coluna Vertebral
4.
Exp Brain Res ; 242(3): 727-743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267736

RESUMO

To adequately evaluate the corticospinal and spinal plasticity in health and disease, it is essential to understand whether and to what extent the corticospinal and spinal responses fluctuate systematically across multiple measurements. Thus, in this study, we examined the session-to-session variability of corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA) in people with and without incomplete spinal cord injury (SCI). In neurologically normal participants, the following measures were obtained across 4 days at the same time of day (N = 13) or 4 sessions over a 12-h period (N = 9, at 8:00, 12:00, 16:00, and 20:00): maximum voluntary contraction (MVC), maximum M-wave and H-reflex (Mmax and Hmax), motor evoked potential (MEP) amplitude, and silent period (SP) after MEP. In participants with chronic incomplete SCI (N = 17), the same measures were obtained across 4 days. We found no clear diurnal variation in the spinal and corticospinal excitability of the TA in individuals with no known neurological conditions, and no systematic changes in any experimental measures of spinal and corticospinal excitability across four measurement days in individuals with or without SCI. Overall, mean deviations across four sessions remained in a range of 5-13% for all measures in participants with or without SCI. The study shows the limited extent of non-systematic session-to-session variability in the TA corticospinal excitability in individuals with and without chronic incomplete SCI, supporting the utility of corticospinal and spinal excitability measures in mechanistic investigation of neuromodulation interventions. The information provided through this study may serve as the reference in evaluating corticospinal plasticity across multiple experimental sessions.


Assuntos
Tornozelo , Traumatismos da Medula Espinal , Humanos , Articulação do Tornozelo , Músculo Esquelético , Potencial Evocado Motor/fisiologia , Reflexo H/fisiologia , Tratos Piramidais , Eletromiografia , Estimulação Magnética Transcraniana
5.
Exp Brain Res ; 242(6): 1267-1276, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366214

RESUMO

The soleus H-reflex modulation pattern was investigated during stepping following transspinal stimulation over the thoracolumbar region at 15, 30, and 50 Hz with 10 kHz carry-over frequency above and below the paresthesia threshold. The soleus H-reflex was elicited by posterior tibial nerve stimulation with a single 1 ms pulse at an intensity that the M-wave amplitudes ranged from 0 to 15% of the maximal M-wave evoked 80 ms after the test stimulus, and the soleus H-reflex was half the size of the maximal H-reflex evoked on the ascending portion of the recruitment curve. During treadmill walking, the soleus H-reflex was elicited every 2 or 3 steps, and stimuli were randomly dispersed across the step cycle which was divided in 16 equal bins. For each subject and condition, the soleus M-wave and H-reflex were normalized to the maximal M-wave. The soleus background electromyographic (EMG) activity was estimated as the linear envelope for 50 ms duration starting at 100 ms before posterior tibial nerve stimulation for each bin. The gain was determined as the slope of the relationship between the soleus H-reflex and the soleus background EMG activity. The soleus H-reflex phase-dependent amplitude modulation remained unaltered during transspinal stimulation, regardless frequency, or intensity. Similarly, the H-reflex slope and intercept remained the same for all transspinal stimulation conditions tested. Locomotor EMG activity was increased in knee extensor muscles during transspinal stimulation at 30 and 50 Hz throughout the step cycle while no effects were observed in flexor muscles. These findings suggest that transspinal stimulation above and below the paresthesia threshold at 15, 30, and 50 Hz does not block or impair spinal integration of proprioceptive inputs and increases activity of thigh muscles that affect both hip and knee joint movement. Transspinal stimulation may serve as a neurorecovery strategy to augment standing or walking ability in upper motoneuron lesions.


Assuntos
Eletromiografia , Reflexo H , Músculo Esquelético , Caminhada , Humanos , Reflexo H/fisiologia , Caminhada/fisiologia , Masculino , Músculo Esquelético/fisiologia , Adulto , Adulto Jovem , Feminino , Estimulação Elétrica/métodos , Nervo Tibial/fisiologia , Medula Espinal/fisiologia
6.
J Musculoskelet Neuronal Interact ; 24(1): 73-81, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427371

RESUMO

OBJECTIVES: To investigate changes in the H-reflex in patients with monoradiculopathies involving L5 or S1 levels by stimulating the sciatic nerve and recording simultaneously from the tibialis anterior (TA), peroneus longus (PL), and soleus (S) muscles. METHODS: Patients with unilateral radicular back pain with L5 or S1 root compression on MRI, participated in this cross-sectional study. The H-reflex over the TA, PL, and S muscles was simultaneously recorded by sciatic nerve stimulation. The H-reflex latency was compared with that of the contralateral extremity. RESULTS: Fifty-eight patients (29 patients L5; 29 patients S1 radiculopathy) were included in the study. There were significant delays in the latency of the H-reflex over TA (30.95±2.31-29.21±1.4) and PL (31.05±2.85-29.02±1.99) muscles on the affected side in patients with L5 radiculopathy. However, the latency of the S H-reflex was similar on both sides. In contrast, in patients with S1 radiculopathy, there was a significant delay in the latency of soleus H reflex (32.76±3.45-29.9±3.19), while the significant delay was not detected in the TA and PL muscles. However, the cutoff values for the H-reflex latency of all muscles were not found to have clinical significance. CONCLUSIONS: The study presents that the H-reflex study, recorded from the TA, PL, and S muscles by sciatic nerve stimulation, is of interest but has minimal contribution to radiculopathy diagnosis in conventional electrodiagnostic tests.


Assuntos
Radiculopatia , Humanos , Radiculopatia/diagnóstico , Raízes Nervosas Espinhais , Estudos Transversais , Músculo Esquelético , Reflexo H/fisiologia
7.
Eur J Appl Physiol ; 124(1): 353-363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524980

RESUMO

PURPOSE: This study aims at comparing acute responses in spinal excitability, as measured by H-reflex, between older and young individuals, following a single session of NMES superimposed onto voluntary isometric contractions of the ankle plantar-flexor muscles (NMES+), with respect to passive NMES (pNMES) and voluntary isometric contractions only (ISO). METHODS: Thirty-two volunteers, 16 older (OLDER) and 16 young (YOUNG), were asked to sustain a constant force at 20% of maximal voluntary isometric contraction (MVIC) of the ankle plantar-flexor muscles in the dominant limb during each of the 3 conditions (NMES+ , pNMES and ISO). Fifteen repetitions of 6 s were performed, with a resting interval of 6 s between repetitions. Before and after each condition, soleus H-reflexes were elicited by percutaneous electrical stimulation of the posterior tibial nerve and H-reflex amplitudes recorded by surface EMG. RESULTS: In OLDER, H-reflex amplitude did not change following any experimental condition (ISO: p = 0.203; pNMES: p = 0.542; NMES+: p = 0.431) compared to baseline. On the contrary, in YOUNG, H-reflex amplitudes significantly increased (p < 0.000) and decreased (p = 0.001) following NMES+ and pNMES, respectively, while there was no significant change in reflex responses following ISO (p = 0.772). CONCLUSION: The lack of change in H-reflex responses following either NMES+ or pNMES might reflect a reduced ability of older people in modulating spinal excitability after the conditions. Specifically, an age-related alteration in controlling mechanisms at presynaptic level was suggested.


Assuntos
Músculo Esquelético , Nervo Tibial , Humanos , Idoso , Adolescente , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Nervo Tibial/fisiologia , Reflexo/fisiologia , Estimulação Elétrica/métodos , Reflexo H/fisiologia , Contração Muscular/fisiologia
8.
J Physiol ; 601(10): 1897-1924, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916205

RESUMO

Sensory and corticospinal tract (CST) pathways activate spinal GABAergic interneurons that have axoaxonic connections onto proprioceptive (Ia) afferents that cause long-lasting depolarizations (termed primary afferent depolarization, PAD). In rodents, sensory-evoked PAD is produced by GABAA receptors at nodes of Ranvier in Ia afferents, rather than at presynaptic terminals, and facilitates spike propagation to motoneurons by preventing branch-point failures, rather than causing presynaptic inhibition. We examined in 40 human participants whether putative activation of Ia-PAD by sensory or CST pathways can also facilitate Ia afferent activation of motoneurons via the H-reflex. H-reflexes in several leg muscles were facilitated by prior conditioning from low-threshold proprioceptive, cutaneous or CST pathways, with a similar long-lasting time course (∼200 ms) to phasic PAD measured in rodent Ia afferents. Long trains of cutaneous or proprioceptive afferent conditioning produced longer-lasting facilitation of the H-reflex for up to 2 min, consistent with tonic PAD in rodent Ia afferents mediated by nodal α5-GABAA receptors for similar stimulation trains. Facilitation of H-reflexes by this conditioning was likely not mediated by direct facilitation of the motoneurons because isolated stimulation of sensory or CST pathways did not alone facilitate the tonic firing rate of motor units. Furthermore, cutaneous conditioning increased the firing probability of single motor units (motoneurons) during the H-reflex without increasing their firing rate at this time, indicating that the underlying excitatory postsynaptic potential was more probable, but not larger. These results are consistent with sensory and CST pathways activating nodal GABAA receptors that reduce intermittent failure of action potentials propagating into Ia afferent branches. KEY POINTS: Controlled execution of posture and movement requires continually adjusted feedback from peripheral sensory pathways, especially those that carry proprioceptive information about body position, movement and effort. It was previously thought that the flow of proprioceptive feedback from Ia afferents was only reduced by GABAergic neurons in the spinal cord that sent axoaxonic projections to the terminal endings of sensory axons (termed GABAaxo neurons). Based on new findings in rodents, we provide complementary evidence in humans to suggest that sensory and corticospinal pathways known to activate GABAaxo neurons that project to dorsal parts of the Ia afferent also increase the flow of proprioceptive feedback to motoneurons in the spinal cord. These findings support a new role for spinal GABAaxo neurons in facilitating afferent feedback to the spinal cord during voluntary or reflexive movements.


Assuntos
Neurônios Motores , Medula Espinal , Humanos , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Tratos Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Músculo Esquelético/fisiologia , Vias Aferentes , Ácido gama-Aminobutírico , Neurônios Aferentes/fisiologia
9.
J Physiol ; 601(8): 1425-1447, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36847245

RESUMO

Current anti-spastic medication significantly compromises motor recovery after spinal cord injury (SCI), indicating a critical need for alternative interventions. Because a shift in chloride homeostasis decreases spinal inhibition and contributes to hyperreflexia after SCI, we investigated the effect of bumetanide, an FDA-approved sodium-potassium-chloride intruder (NKCC1) antagonist, on presynaptic and postsynaptic inhibition. We compared its effect with step-training as it is known to improve spinal inhibition by restoring chloride homeostasis. In SCI rats, a prolonged bumetanide treatment increased postynaptic inhibition but not presynaptic inhibition of the plantar H-reflex evoked by posterior biceps and semitendinosus (PBSt) group I afferents. By using in vivo intracellular recordings of motoneurons, we further show that a prolonged bumetanide increased postsynaptic inhibition by hyperpolarizing the reversal potential for inhibitory postsynaptic potentials (IPSPs) after SCI. However, in step-trained SCI rats an acute delivery of bumetanide decreased presynaptic inhibition of the H-reflex, but not postsynaptic inhibition. These results suggest that bumetanide might be a viable option to improve postsynaptic inhibition after SCI, but it also decreases the recovery of presynaptic inhibition with step-training. We discuss whether the effects of bumetanide are mediated by NKCC1 or by off-target effects. KEY POINTS: After spinal cord injury (SCI), chloride homeostasis is dysregulated over time in parallel with the decrease in presynaptic inhibition of Ia afferents and postsynaptic inhibition of motoneurons, and the development of spasticity. While step-training counteracts these effects, it cannot always be implemented in the clinic because of comorbidities. An alternative intervention is to use pharmacological strategies to decrease spasticity without hindering the recovery of motor function with step-training. Here we found that, after SCI, a prolonged bumetanide (an FDA-approved antagonist of the sodium-potassium-chloride intruder, NKCC1) treatment increases postsynaptic inhibition of the H-reflex, and it hyperpolarizes the reversal potential for inhibitory postsynaptic potentials in motoneurons. However, in step-trained SCI, an acute delivery of bumetanide decreases presynaptic inhibition of the H-reflex, but not postsynaptic inhibition. Our results suggest that bumetanide has the potential to decrease spastic symptoms related to a decrease in postsynaptic but not presynaptic inhibition after SCI.


Assuntos
Bumetanida , Traumatismos da Medula Espinal , Ratos , Animais , Bumetanida/farmacologia , Medula Espinal/fisiologia , Cloretos , Traumatismos da Medula Espinal/tratamento farmacológico , Neurônios Motores/fisiologia , Espasticidade Muscular
10.
J Neurophysiol ; 129(3): 685-699, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791051

RESUMO

Operant conditioning of a spinal monosynaptic pathway using the Hoffman reflex (H-reflex) is well established in animal and human studies. There is a subset within the human population (∼20% nonresponders) who are unable to up train this pathway suggesting some distinct or unique identifying characteristics. Importantly, females, who have a nine times higher rate of injury during human performance activities than men, have been understudied in areas of CNS neuroplasticity. Our long-term goal is to understand if innate ability to rapidly up train the H-reflex is predictive of future performance-based injury among females. In this study, we primarily determined whether healthy, young females could rapidly increase the H-reflex within a single session of operant conditioning and secondarily determined if electro-physiological, humoral, cognitive, anthropometric, or anxiety biomarkers distinguished the responders from nonresponders. Eighteen females (mean age: 24) participated in the study. Overall, females showed a group main effect for up training the H-reflex (P < 0.05). Of the cohort, 10 of 18 females met the criteria for up training the H-reflex (responders). The responders showed lower levels of estradiol (P < 0.05). A multivariate stepwise regression model supported that extracellular to intracellular water ratio (ECW/ICW) and H-max/M-max ratio explained 60% of the variation in up training among females. These findings support that females can acutely upregulate the H-reflex with training and that electro-physiological and hormonal factors may be associated with the up training.NEW & NOTEWORTHY Young females who acutely increase their H-reflexes with operant conditioning had lower levels of estradiol. However, the best predictors of those who could up-train the H-reflex were baseline H-reflex excitability (H-max/M-max) and extracellular to intracellular water ratio (ECW/ICW). Future studies are warranted to understand the complex relationship between operant conditioning, human performance, and injury among active young females.


Assuntos
Reflexo H , Traumatismos da Medula Espinal , Masculino , Animais , Humanos , Feminino , Adulto Jovem , Adulto , Reflexo H/fisiologia , Condicionamento Operante/fisiologia , Plasticidade Neuronal/fisiologia , Eletromiografia
11.
J Neurophysiol ; 129(6): 1310-1321, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162183

RESUMO

Superimposing neuromuscular electrical stimulation (NMES) on voluntary muscle contractions has shown the potential to improve motor performance even more than voluntary exercise alone. Nevertheless, the neurophysiological and neurocognitive mechanisms underlying this technique are still unclear. The aim of this study was to investigate the acute responses in spinal excitability and brain activity following three conditions: NMES superimposed on isometric contractions (NMES + ISO), passive NMES, and voluntary isometric contractions (ISO). Each condition involved 15 intermittent ankle plantar-flexions at submaximal level. Before and after each condition, tibial nerve stimulation was used to elicit H-reflexes, which represent a measure of spinal excitability, and somatosensory evoked potentials (SEPs), which index the activity of subcortical and cortical somatosensory areas. H-reflex amplitudes increased after NMES + ISO and decreased after passive NMES compared with baseline values, whereas they remained unaltered after ISO. Subcortical lemniscal activity remained unaltered after the three conditions. Activity in both primary and secondary somatosensory cortices (S1 and S2) increased after NMES + ISO and decreased after the ISO condition, whereas no differences emerged after NMES. At later stages of S2 processing, ISO induced no changes in cortical activity, which, conversely, increased after NMES and NMES + ISO. These findings indicate that the beneficial effects of NMES may be mediated by potentiation of the reflex pathways at the spinal level. At the brain level, peripheral input representation in the brain stem was not influenced by the experimental conditions, which, conversely, altered cortical activity by affecting synaptic efficiency through the somatosensory pathway.NEW & NOTEWORTHY Neuromuscular electrical stimulation superimposed on voluntary contractions (NMES+) is effective to improve motor performance in several populations. Here, we investigated the changes in cortical activation and reflex response following three acute conditions, including NMES+. Our results show that NMES+ has a greater excitatory effect at both spinal and cortical levels compared with passive stimulation and voluntary exercise alone. These results open up original perspectives for the implementation of NMES+ in neurorehabilitation and training environments.


Assuntos
Músculo Esquelético , Reflexo , Músculo Esquelético/fisiologia , Estimulação Elétrica/métodos , Reflexo/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Eletromiografia
12.
J Neurophysiol ; 129(2): 368-379, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515975

RESUMO

Virtual reality (VR) is known to induce substantial activation of brain's motor regions. It remains unclear to what extent virtual reality can trigger the sensorimotor system, and more particularly, whether it can affect lower nervous levels. In this study, we aimed to assess whether VR simulation of challenging and stressful postural situations (Richie's plank experience) could interfere with spinal excitability of postural muscles in 15 healthy young participants. The H-reflex of the triceps surae muscles was elicited with electrical nerve stimulation while participants were standing and wearing a VR headset. Participants went through several conditions, during which stimulations were evoked: standing still (noVR), standing in VR on the ground (groundVR), standing on the edge of a building (plankVR), and falling from the building (fallingVR). Myoelectrical activity of the triceps surae muscles was measured throughout the experiment. Leg and head movements were also measured by means of accelerometers to account for body oscillations. First, no differences in head rotations and myoelectrical activity were to be noted between conditions. Second, triceps H-reflex (HMAX/MMAX) was not affected from noVR to groundVR and plankVR. The most significant finding was a drastic decrease in H-reflex during falling (-47 ± 26.9% between noVR and fallingVR, P = 0.015). It is suggested that experiencing a postural threat in VR efficiently modulates spinal excitability, despite remaining in a quiet standing posture. This study suggests that simulated falling mimics the neural adjustments observed during actual postural challenge tasks.NEW & NOTEWORTHY The present study showed a modulation of spinal excitability induced by virtual reality (VR). In the standing position, soleus H-reflex was downmodulated during a simulated falling, in the absence of apparent changes in body oscillations. Since the same behavior is usually observed during real falling, it was suggested that the visual cues provided by VR were sufficiently strong to lead the neuromuscular system to mimic the actual modulation.


Assuntos
Músculo Esquelético , Realidade Virtual , Humanos , Eletromiografia , Músculo Esquelético/fisiologia , Encéfalo , Reflexo H/fisiologia
13.
J Neurophysiol ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722742

RESUMO

Following spinal cord injury (SCI) task-dependent modulation of spinal reflexes are often impaired. To gain insight into the state of the spinal interneuronal pathways following injury, we studied the amplitude modulation of triceps surae cutaneous reflexes to non-noxious stimuli during standing and early-to-mid stance phase of walking in participants with and without chronic incomplete SCI. Reflex eliciting nerve stimulation was delivered to the superficial peroneal, sural, and distal tibial nerves about the ankle. Reflexes were analyzed in the short (SLR, 50-80 ms post stimulation onset) and the medium (MLR, 80-120 ms) latency response windows. Further, the relation between cutaneous and H-reflexes was also examined during standing. In participants without injuries the soleus SLR was modulated task-dependently with nerve specificity, and the soleus and medial gastrocnemius MLRs were modulated task-dependently. In contrast, participants with SCI, no task-dependent or nerve-specific modulation of triceps cutaneous reflexes was observed. The triceps surae cutaneous and H-reflexes were not correlated in either group (r = 0.01-0.37). The presence of cutaneous reflexes but the absence of significant amplitude modulation may suggest impaired function of spinal interneuronal pathways in this population. The lack of correlation between the cutaneous and H-reflexes may suggest that interneurons that are involved in H-reflex modulation and cutaneous reflex modulation do not receive common input, or the impact of the common input is outweighed by other input. Present findings highlight the importance of examining multiple spinal reflexes to better understanding spinal interneuronal pathways that affect motor control in people after SCI.

14.
J Neurophysiol ; 130(4): 1008-1014, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37701940

RESUMO

The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.


Assuntos
Marcha , Reflexo , Adulto , Humanos , Eletromiografia , Coluna Vertebral , Adaptação Fisiológica , Caminhada , Teste de Esforço
15.
Eur J Neurosci ; 58(2): 2515-2522, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37323103

RESUMO

The activation of the Mirror Neuron System (MNS) has been described to reflect visible movements, but not postural, non-visible, adaptations that accompany the observed movements. Since any motor act is the result of a well-tailored dialogue between these two components, we decided to investigate whether a motor resonance to nonvisible postural adaptations could be detected. Possible changes in soleus corticospinal excitability were investigated by eliciting the H-reflex during the observation of three videos, corresponding to three distinct experimental conditions: 'Chest pass', 'Standing' and 'Sitting', and comparing its size with that measured during observation of a control videoclip (a landscape). In the observed experimental conditions, the Soleus muscle has different postural roles: a dynamic role in postural adaptations during the Chest pass; a static role while Standing still; no role while Sitting. The H-reflex amplitude was significantly enhanced in the 'Chest pass' condition compared to the 'Sitting' and 'Standing' conditions. No significant difference was found between 'Sitting' and 'Standing' conditions. The increased corticospinal excitability of the Soleus during the 'Chest pass' condition suggests that the mirror mechanisms produce a resonance to postural components of an observed action, although they may not be visible. This observation highlights the fact that mirror mechanisms echo non intentional movements as well and points to a novel possible role of mirror neurons in motor recovery.


Assuntos
Neurônios-Espelho , Eletromiografia , Músculo Esquelético/fisiologia , Movimento , Reflexo H/fisiologia
16.
Eur J Neurosci ; 57(11): 1803-1814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119012

RESUMO

Ageing is accompanied by numerous changes within the sensory and motor components of the muscle spindle pathway. To further document these age-related changes, this study compared the characteristics of the Hoffmann (H) reflex and M wave, evoked with several pulse durations, between young and old adults. The H-reflex and M-wave recruitment curves were recorded at rest in the flexor carpi radialis of 12 young (21-36 years) and 12 older adults (62-80 years). For each pulse duration (0.05, 0.2 and 1 ms), the maximal M-wave (MMAX ) and H-reflex (HMAX ) amplitude, the M-wave amplitude associated with HMAX (MHmax ) and the H-reflex amplitude for a stimulus intensity evoking an M-wave of 5% MMAX (HM5% ) were measured. The strength-duration time constant and response threshold were estimated from the charge/stimulus-duration relation for the H reflex and M wave. Results indicate that varying pulse duration mainly induces a similar effect on H-reflex and M-wave recruitment curves between young and older adults. Regardless of pulse duration, old adults had lesser HMAX (p = 0.029) and HM5% (p < 0.001) but greater MHmax (p < 0.001). The H-reflex and M-wave response thresholds were greater in old than young adults (p = 0.003), but the strength-duration time constant was lesser in old than young adults for the H reflex (p = 0.048) but not the M wave (p = 0.21). These results suggest greater age-related changes in the sensory than the motor component of the H-reflex pathway, which may be indicative of a greater loss of sensory than motor axons or alterations of synapses between Ia afferents and motor neurones.


Assuntos
Envelhecimento , Músculo Esquelético , Adulto Jovem , Humanos , Idoso , Eletromiografia/métodos , Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Reflexo H/fisiologia
17.
Exp Brain Res ; 241(4): 1089-1100, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36928923

RESUMO

In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.


Assuntos
Antebraço , Robótica , Humanos , Eletromiografia , Antebraço/fisiologia , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia , Tratos Piramidais/fisiologia , Reflexo H/fisiologia , Potencial Evocado Motor/fisiologia
18.
Exp Brain Res ; 241(6): 1599-1610, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142781

RESUMO

Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.


Assuntos
Reflexo H , Músculo Esquelético , Masculino , Humanos , Feminino , Eletromiografia/métodos , Reflexo H/fisiologia , Músculo Esquelético/fisiologia , Neurônios Motores/fisiologia , Extremidade Inferior , Contração Muscular/fisiologia
19.
Scand J Med Sci Sports ; 33(5): 597-608, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36609914

RESUMO

Recent findings provided evidence that spinal regulatory mechanisms were involved in corticomuscular coherence (CMC) modulation between contraction types. Although their relative contributions could not be precisely identified, it was suggested that recurrent inhibition (RI) could modulate CMC by regulating the synchronization of spinal motoneuron activity. To confirm this hypothesis, concurrent modulations of RI and CMC for the soleus (SOL) were compared during submaximal isometric, shortening and lengthening plantar flexions. Submaximal contraction intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the nonrectified SOL EMG signal. The RI was quantified through the paired Hoffmann (H) reflex technique by comparing the modulations of the test and conditioning H-reflexes (H' and H1 , respectively). Both beta-band CMC and the ratio between H' and H1 amplitudes were significantly lower in SOL during lengthening compared with isometric and shortening contractions. Furthermore, we observed a negative linear correlation between the RI and beta-band CMC. Finally, a higher RI increase during lengthening contractions compared to either isometric or shortening ones was correlated with a larger decrease in CMC. Collectively, these novel findings provide robust evidence that the RI acts as a neural "filter" that contributes to the modulation of corticomuscular interactions between contraction types, possibly by disrupting the oscillatory muscle activation.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Eletromiografia/métodos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Eletroencefalografia , Reflexo H/fisiologia
20.
Eur J Appl Physiol ; 123(3): 609-621, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36352055

RESUMO

During isometric contractions, corticomuscular coherence (CMC) may be modulated along with the contraction intensity. Furthermore, CMC may also vary between contraction types due to the contribution of spinal inhibitory mechanisms. However, the interaction between the effect of the contraction intensity and of the contraction type on CMC remains hitherto unknown. Therefore, CMC and spinal excitability modulations were compared during submaximal isometric, shortening and lengthening contractions of plantar flexor muscles at 25, 50, and 70% of the maximal soleus (SOL) EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the SOL or medial gastrocnemius (MG) EMG signals. The results indicated that beta-band CMC was decreased in the SOL only between 25 and 50-70% contractions for both isometric and anisometric contractions, but remained similar for all contraction intensities in the MG. Spinal excitability was similar for all contraction intensities in both muscles. Meanwhile a divergence of the EEG and the EMG signals mean frequency was observed only in the SOL and only between 25 and 50-70% contractions, independently from the contraction type. Collectively, these findings confirm an effect of the contraction intensity on beta-band CMC, although it was only measured in the SOL, between low-level and high-level contraction intensities. Furthermore, the current findings provide new evidence that the observed modulations of beta-band CMC with the contraction intensity does not depend on the contraction type or on spinal excitability variations.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa