Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Cell ; 186(5): 1050-1065.e19, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750094

RESUMO

Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.


Assuntos
Cromatina , Memória de Curto Prazo , Ciclo Celular , Replicação do DNA , Histonas/metabolismo , Nucleossomos , Animais , Camundongos , Coelhos
2.
Cell ; 178(6): 1421-1436.e24, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491386

RESUMO

The developmental disorder Floating-Harbor syndrome (FHS) is caused by heterozygous truncating mutations in SRCAP, a gene encoding a chromatin remodeler mediating incorporation of histone variant H2A.Z. Here, we demonstrate that FHS-associated mutations result in loss of SRCAP nuclear localization, alter neural crest gene programs in human in vitro models and Xenopus embryos, and cause craniofacial defects. These defects are mediated by one of two H2A.Z subtypes, H2A.Z.2, whose knockdown mimics and whose overexpression rescues the FHS phenotype. Selective rescue by H2A.Z.2 is conferred by one of the three amino acid differences between the H2A.Z subtypes, S38/T38. We further show that H2A.Z.1 and H2A.Z.2 genomic occupancy patterns are qualitatively similar, but quantitatively distinct, and H2A.Z.2 incorporation at AT-rich enhancers and expression of their associated genes are both sensitized to SRCAP truncations. Altogether, our results illuminate the mechanism underlying a human syndrome and uncover selective functions of H2A.Z subtypes during development.


Assuntos
Anormalidades Múltiplas/genética , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Histonas/genética , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Animais , Células-Tronco Embrionárias , Células HEK293 , Humanos , Mutação , Xenopus laevis
3.
Cell ; 172(5): 993-1006.e13, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456083

RESUMO

The fate and function of epigenetic marks during the germline-to-embryo transition is a key issue in developmental biology, with relevance to stem cell programming and transgenerational inheritance. In zebrafish, DNA methylation patterns are programmed in transcriptionally quiescent cleavage embryos; paternally inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal. Here, we provide the mechanism by demonstrating that "Placeholder" nucleosomes, containing histone H2A variant H2A.Z(FV) and H3K4me1, virtually occupy all regions lacking DNA methylation in both sperm and cleavage embryos and reside at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with Placeholder become either active (H3K4me3) or silent (H3K4me3/K27me3). Notably, perturbations causing Placeholder loss confer DNA methylation accumulation, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent gametic and embryonic stages, an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNA methylation, poising parental genes for either gene-specific activation or facultative repression.


Assuntos
Reprogramação Celular/genética , Metilação de DNA/genética , Embrião não Mamífero/metabolismo , Células Germinativas/metabolismo , Nucleossomos/metabolismo , Animais , Histonas/metabolismo , Masculino , Mutação/genética , Espermatozoides/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Genes Dev ; 38(7-8): 336-353, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744503

RESUMO

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas , Melanoma , Humanos , Melanoma/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Histonas/genética , Acetilação , Apoptose/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
5.
Mol Cell ; 83(4): 507-522.e6, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36630954

RESUMO

Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Reparo do DNA , Nucleossomos , Humanos , Adenosina Trifosfatases/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética
6.
Mol Cell ; 83(16): 2872-2883.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595555

RESUMO

SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Cromatina/genética , Microscopia Crioeletrônica , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina , Nucleossomos/genética , Humanos
7.
Mol Cell ; 83(16): 2884-2895.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37536340

RESUMO

DNA replication ensures the accurate transmission of genetic information during the cell cycle. Histone variant H2A.Z is crucial for early replication origins licensing and activation in which SUV420H1 preferentially recognizes H2A.Z-nucleosome and deposits H4 lysine 20 dimethylation (H4K20me2) on replication origins. Here, we report the cryo-EM structures of SUV420H1 bound to H2A.Z-nucleosome or H2A-nucleosome and demonstrate that SUV420H1 directly interacts with H4 N-terminal tail, the DNA, and the acidic patch in the nucleosome. The H4 (1-24) forms a lasso-shaped structure that stabilizes the SUV420H1-nucleosome complex and precisely projects the H4K20 residue into the SUV420H1 catalytic center. In vitro and in vivo analyses reveal a crucial role of the SUV420H1 KR loop (residues 214-223), which lies close to the H2A.Z-specific residues D97/S98, in H2A.Z-nucleosome preferential recognition. Together, our findings elucidate how SUV420H1 recognizes nucleosomes to ensure site-specific H4K20me2 modification and provide insights into how SUV420H1 preferentially recognizes H2A.Z nucleosome.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Nucleossomos/genética , Metilação , DNA/metabolismo , Replicação do DNA
8.
Mol Cell ; 82(24): 4627-4646.e14, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36417913

RESUMO

Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.


Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Acetilação , Ativação Transcricional , Cromatina/genética , Processamento de Proteína Pós-Traducional , Nucleossomos
9.
Genes Dev ; 36(1-2): 17-22, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916303

RESUMO

Eukaryotic cells maintain an optimal level of mRNAs through unknown mechanisms that balance RNA synthesis and degradation. We found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. We identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. These findings reveal how the RNA exosome and H2A.Z function together to control a deacetylase, ensuring proper levels of transcription in response to changes in RNA degradation.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Sirtuínas , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Histonas/genética , Histonas/metabolismo , Homeostase/genética , RNA Mensageiro/genética , Sirtuínas/genética , Sirtuínas/metabolismo
10.
Genes Dev ; 35(23-24): 1678-1692, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819351

RESUMO

How transcription programs rapidly adjust to changing metabolic and cellular cues remains poorly defined. Here, we reveal a function for the Yaf9 component of the SWR1-C and NuA4 chromatin regulatory complexes in maintaining timely transcription of metabolic genes across the yeast metabolic cycle (YMC). By reading histone acetylation during the oxidative and respiratory phase of the YMC, Yaf9 recruits SWR1-C and NuA4 complexes to deposit H2A.Z and acetylate H4, respectively. Increased H2A.Z and H4 acetylation during the oxidative phase promotes transcriptional initiation and chromatin machinery occupancy and is associated with reduced RNA polymerase II levels at genes-a pattern reversed during transition from oxidative to reductive metabolism. Prevention of Yaf9-H3 acetyl reading disrupted this pattern of transcriptional and chromatin regulator recruitment and impaired the timely transcription of metabolic genes. Together, these findings reveal that Yaf9 contributes to a dynamic chromatin and transcription initiation factor signature that is necessary for the proper regulation of metabolic gene transcription during the YMC. They also suggest that unique regulatory mechanisms of transcription exist at distinct metabolic states.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Acetilação , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Trends Biochem Sci ; 47(11): 909-920, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35606214

RESUMO

The histone variant H2A.Z has been extensively studied to understand its manifold DNA-based functions. In the past years, researchers identified its specific binding partners, the 'H2A.Z interactome', that convey H2A.Z-dependent chromatin changes. Here, we summarize the latest findings regarding vertebrate H2A.Z-associated factors and focus on their roles in gene activation and repression, cell cycle regulation, (neuro)development, and tumorigenesis. Additionally, we demonstrate how protein-protein interactions and post-translational histone modifications can fine-tune the complex interplay of H2A.Z-regulated gene expression. Last, we review the most recent results on interactors of the two isoforms H2A.Z.1 and H2A.Z.2.1, which differ in only three amino acids, and focus on cancer-associated mutations of H2A and H2A.Z, which reveal fascinating insights into the functional importance of such minuscule changes.


Assuntos
Cromatina , Histonas , Aminoácidos/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Nucleossomos , Isoformas de Proteínas/genética
12.
Am J Hum Genet ; 110(3): 460-474, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36773604

RESUMO

Uterine leiomyomas (ULs) are benign smooth muscle tumors that are common in premenopausal women. Somatic alterations in MED12, HMGA2, FH, genes encoding subunits of the SRCAP complex, and genes involved in Cullin 3-RING E3 ligase neddylation are mutually exclusive UL drivers. Established predisposition genes explain only partially the estimated heritability of leiomyomas. Here, we examined loss-of-function variants across 18,899 genes in a cohort of 233,614 White European women, revealing variants in four genes encoding SRCAP complex subunits (YEATS4, ZNHIT1, DMAP1, and ACTL6A) with a significant association to ULs, and YEATS4 and ZNHIT1 strikingly rank first and second, respectively. Positive mutation status was also associated with younger age at diagnosis and hysterectomy. Moderate-penetrance UL risk was largely attributed to rare non-synonymous mutations affecting the SRCAP complex. To examine this disease phenotype more closely, we set out to identify inherited mutations affecting the SRCAP complex in our in-house sample collection of Finnish individuals with ULs (n = 860). We detected one individual with an ACTL6A splice-site mutation, two individuals with a YEATS4 missense mutation, and four individuals with DMAP1 mutations: one splice-site, one nonsense, and two missense variants. These individuals had large and/or multiple ULs, were often diagnosed at an early age, and many had family history of ULs. When a somatic second hit was found, ACTL6A and DMAP1 were silenced in tumors by somatic mutation and YEATS4 by promoter hypermethylation. Decreased H2A.Z staining was observed in the tumors, providing further evidence for the pathogenic nature of the germline mutations. Our results establish inactivation of genes encoding SRCAP complex subunits as a central contributor to moderate-penetrance UL predisposition.


Assuntos
Leiomioma , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Mutação em Linhagem Germinativa , Penetrância , Análise Mutacional de DNA , Leiomioma/genética , Leiomioma/patologia , Mutação , Complexo Mediador/genética , Actinas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Adenosina Trifosfatases/genética
13.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897355

RESUMO

Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ativação Transcricional , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
14.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938830

RESUMO

The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.


Assuntos
Histonas , Peixe-Zebra , Animais , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional , Desenvolvimento Embrionário/genética , Nucleossomos
15.
Mol Cell ; 72(5): 888-901.e7, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30344095

RESUMO

Safeguarding cell function and identity following a genotoxic stress challenge entails a tight coordination of DNA damage signaling and repair with chromatin maintenance. How this coordination is achieved and with what impact on chromatin integrity remains elusive. Here, we address these questions by investigating the mechanisms governing the distribution in mammalian chromatin of the histone variant H2A.X, a central player in damage signaling. We reveal that H2A.X is deposited de novo at sites of DNA damage in a repair-coupled manner, whereas the H2A.Z variant is evicted, thus reshaping the chromatin landscape at repair sites. Our mechanistic studies further identify the histone chaperone FACT (facilitates chromatin transcription) as responsible for the deposition of newly synthesized H2A.X. Functionally, we demonstrate that FACT potentiates H2A.X-dependent signaling of DNA damage. We propose that new H2A.X deposition in chromatin reflects DNA damage experience and may help tailor DNA damage signaling to repair progression.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Fatores de Elongação da Transcrição/genética , Alfa-Amanitina/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Morfolinas/farmacologia , Células NIH 3T3 , Nucleossomos/química , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Venenos/farmacologia , Pirimidinas/farmacologia , Pironas/farmacologia , Transdução de Sinais , Fatores de Elongação da Transcrição/metabolismo
16.
Genes Dev ; 32(1): 58-69, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437725

RESUMO

Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that GAS41 is frequently amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell proliferation, survival, and transformation. Biochemical and crystal structural studies demonstrate that GAS41 binds to histone H3 acetylated on H3K27 and H3K14, a specificity that is distinct from that of AF9 or ENL. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) analyses in lung cancer cells reveal that GAS41 colocalizes with H3K27ac and H3K14ac on the promoters of actively transcribed genes. Depletion of GAS41 or disruption of the interaction between its YEATS domain and acetylated histones impairs the association of histone variant H2A.Z with chromatin and consequently suppresses cancer cell growth and survival both in vitro and in vivo. Overall, our study identifies GAS41 as a histone acetylation reader that promotes histone H2A.Z deposition in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Amplificação de Genes , Genes cdc , Histonas/fisiologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
17.
Semin Cell Dev Biol ; 135: 3-12, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35365397

RESUMO

Chromatin, the functional organization of DNA with histone proteins in eukaryotic nuclei, is the tightly-regulated template for several biological processes, such as transcription, replication, DNA damage repair, chromosome stability and sister chromatid segregation. In order to achieve a reversible control of local chromatin structure and DNA accessibility, various interconnected mechanisms have evolved. One of such processes includes the deposition of functionally-diverse variants of histone proteins into nucleosomes, the building blocks of chromatin. Among core histones, the family of H2A histone variants exhibits the largest number of members and highest sequence-divergence. In this short review, we report and discuss recent discoveries concerning the biological functions of the animal histone variants H2A.B, H2A.X and H2A.Z and how dysregulation or mutation of the latter impacts the development of disease.


Assuntos
Histonas , Nucleossomos , Animais , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Cromatina/genética , Reparo do DNA/genética , DNA/genética
18.
Semin Cell Dev Biol ; 135: 85-92, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35474148

RESUMO

The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).


Assuntos
Histonas , Nucleossomos , Animais , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Plantas/genética , Plantas/metabolismo
19.
Dev Biol ; 507: 34-43, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159623

RESUMO

Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z binding during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation and developmental genes become precociously active. Accordingly, H2A.Z accumulation occurs most extensively at Sox motif-associated genes, including many which are normally activated following gastrulation. Altogether, our results provide compelling evidence for a mechanism in which Anp32e preferentially restricts H2A.Z accumulation at Sox motifs to regulate the initial phases of developmental differentiation in zebrafish.


Assuntos
Histonas , Peixe-Zebra , Animais , Histonas/genética , Histonas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Gastrulação/genética , Epigênese Genética , Cromatina , Nucleossomos
20.
Trends Genet ; 38(3): 273-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702577

RESUMO

H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.


Assuntos
Cromatina , Histonas , Animais , Cromatina/genética , Histonas/genética , Mamíferos/genética , Nucleossomos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa