Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.668
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 170(1): 114-126.e15, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666113

RESUMO

Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C2H2-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H2O2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Cruzamento , Resistência à Doença , Técnicas de Inativação de Genes , Genoma de Planta , Estudo de Associação Genômica Ampla , Doenças das Plantas , Regiões Promotoras Genéticas
2.
Proc Natl Acad Sci U S A ; 121(34): e2401638121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133841

RESUMO

This study analyzes H2O and HDO vertical profiles in the Venus mesosphere using Venus Express/Solar Occultation in the InfraRed data. The findings show increasing H2O and HDO volume mixing ratios with altitude, with the D/H ratio rising significantly from 0.025 at ~70 km to 0.24 at ~108 km. This indicates an increase from 162 to 1,519 times the Earth's ratio within 40 km. The study explores two hypotheses for these results: isotopic fractionation from photolysis of H2O over HDO or from phase change processes. The latter, involving condensation and evaporation of sulfuric acid aerosols, as suggested by previous authors [X. Zhang et al., Nat. Geosci. 3, 834-837 (2010)], aligns more closely with the rapid changes observed. Vertical transport computations for H2O, HDO, and aerosols show water vapor downwelling and aerosols upwelling. We propose a mechanism where aerosols form in the lower mesosphere due to temperatures below the water condensation threshold, leading to deuterium-enriched aerosols. These aerosols ascend, evaporate at higher temperatures, and release more HDO than H2O, which are then transported downward. Moreover, this cycle may explain the SO2 increase in the upper mesosphere observed above 80 km. The study highlights two crucial implications. First, altitude variation is critical to determining the Venus deuterium and hydrogen reservoirs. Second, the altitude-dependent increase of the D/H ratio affects H and D escape rates. The photolysis of H2O and HDO at higher altitudes releases more D, influencing long-term D/H evolution. These findings suggest that evolutionary models should incorporate altitude-dependent processes for accurate D/H fractionation predictions.

3.
Proc Natl Acad Sci U S A ; 121(9): e2317435121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377211

RESUMO

Creating efficient catalysts for simultaneous H2O2 generation and pollutant degradation is vital. Piezocatalytic H2O2 synthesis offers a promising alternative to traditional methods but faces challenges like sacrificial reagents, harsh conditions, and low activity. In this study, we introduce a cobalt-loaded ZnO (CZO) piezocatalyst that efficiently generates H2O2 from H2O and O2 under ultrasonic (US) treatment in ambient aqueous conditions. The catalyst demonstrates exceptional performance with ~50.9% TOC removal of phenol and in situ generation of 1.3 mM H2O2, significantly outperforming pure ZnO. Notably, the CZO piezocatalyst maintains its H2O2 generation capability even after multiple cycles, showing continuous improvement (from 1.3 mM to 1.8 mM). This is attributed to the piezoelectric electrons promoting the generation of dynamic defects under US conditions, which in turn promotes the adsorption and activation of oxygen, thereby facilitating efficient H2O2 production, as confirmed by EPR spectrometry, XPS analysis, and DFT calculations. Moreover, the CZO piezocatalysts maintain outstanding performance in pollutant degradation and H2O2 production even after long periods of inactivity, and the deactivated catalyst due to metal ion dissolution could be rejuvenated by pH adjustment, offering a sustainable solution for wastewater purification.

4.
Proc Natl Acad Sci U S A ; 121(33): e2407012121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102537

RESUMO

Water resources are indispensable basic resources and important environmental carriers; the presence of organic contaminants in wastewater poses considerable risks to the health of both humans and ecosystems. Although the Fenton-like reactions using H2O2 as the oxidant to destroy organic pollutants are attractive, there are still challenges in improving reaction activity under neutral or even alkaline conditions. Herein, we designed a H2O2 activation pathway with O2•- as the main active species and elucidated that the spin interaction between Fe sites and coordinated O atoms effectively promotes the generation of the key intermediate Fe-*OOH. Furthermore, we successfully captured and analyzed the Fe-*OOH intermediate by in situ Raman spectroscopy. When applying FBOB to a continuous-flow reactor, CIP removal efficiency remained at around 90% within 600 min of continuous operation, achieving excellent efficiency, stability, and pH tolerance in removing pollutants.

5.
Immunol Rev ; 313(1): 64-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089768

RESUMO

The evolutionary history of complement suggests that the alternative pathway arose prior to the arrival of the classical and lectin pathways. In these pathways, target specificity is provided by antibodies and sugar specific lectins. While these efficient initiation systems dominate activation on most targets, the alternative pathway produces most of the C3b and 80%-90% of the C5b-9. While the tickover process, originally proposed by Peter Lachmann, provided ancient hosts with a crude self/non-self-discriminatory system that initiated complement attack on everything foreign, tickover clearly plays a more minor role in complement activation in modern organisms possessing classical and lectin pathways. Spontaneous activation of the alternative pathway via tickover may play a major role in human pathologies where tissue damage is complement-mediated. The molecular mechanism of tickover is still not convincingly proven. Prevailing hypotheses include (a) spontaneous hydrolysis of the thioester in C3 forming the C3b-like C3(H2 O) in solution and (b) "enhanced tickover" in which surfaces cause specific or non-specific contact activated conformational changes in C3. Theoretical considerations, including computer simulations, suggest that the latter mechanism is more likely and that more research needs to be devoted to understanding interactions between biological surfaces and C3.


Assuntos
Complemento C3 , Complemento C3b , Humanos , Complemento C3/metabolismo , Complemento C3b/metabolismo , Ativação do Complemento , Anticorpos , Compostos de Enxofre , Via Alternativa do Complemento
6.
Proc Natl Acad Sci U S A ; 120(3): e2217148120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630453

RESUMO

Modulation of water activation is crucial to water-involved chemical reactions in heterogeneous catalysis. Organic sulfur (COS and CS2) hydrolysis is such a typical reaction involving water (H2O) molecule as a reactant. However, limited by the strong O-H bond in H2O, satisfactory CS2 hydrolysis performance is attained at high temperature above 310 °C, which is at the sacrifice of the Claus conversion, strongly hindering sulfur recovery efficiency improvement and pollution emissions control of the Claus process. Herein, we report a facile oxygen vacancy (VO) engineering on titanium-based perovskite to motivate H2O activation for enhanced COS and CS2 hydrolysis at lower temperature. Increased amount of VO contributed to improved degree of H2O dissociation to generate more active -OH, due to lower energy barrier for H2O dissociation over surface rich in VO, particularly VO clusters. Besides, low-coordinated Ti ions adjacent to VO were active sites for H2O activation. Consequently, complete conversion of COS and CS2 was achieved over SrTiO3 after H2 reduction treatment at 225 °C, a favorable temperature for the Claus conversion, at which both satisfying COS and CS2 hydrolysis performance and improved sulfur recovery efficiency can be obtained simultaneously. Additionally, the origin of enhanced hydrolysis activity from boosted H2O activation by VO was revealed via in-depth mechanism study. This provides more explicit direction for further design of efficacious catalysts for H2O-involved reactions.


Assuntos
Oxigênio , Titânio , Temperatura , Hidrólise , Água/química , Enxofre
7.
Proc Natl Acad Sci U S A ; 120(13): e2221984120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940327

RESUMO

Terrestrial reactive oxygen species (ROS) may have played a central role in the formation of oxic environments and evolution of early life. The abiotic origin of ROS on the Archean Earth has been heavily studied, and ROS are conventionally thought to have originated from H2O/CO2 dissociation. Here, we report experiments that lead to a mineral-based source of oxygen, rather than water alone. The mechanism involves ROS generation at abraded mineral-water interfaces in various geodynamic processes (e.g., water currents and earthquakes) which are active where free electrons are created via open-shell electrons and point defects, high pressure, water/ice interactions, and combinations of these processes. The experiments reported here show that quartz or silicate minerals may produce reactive oxygen-containing sites (≡SiO•, ≡SiOO•) that initially emerge in cleaving Si-O bonds in silicates and generate ROS during contact with water. Experimental isotope-labeling experiments show that the hydroxylation of the peroxy radical (≡SiOO•) is the predominant pathway for H2O2 generation. This heterogeneous ROS production chemistry allows the transfer of oxygen atoms between water and rocks and alters their isotopic compositions. This process may be pervasive in the natural environment, and mineral-based production of H2O2 and accompanying O2 could occur on Earth and potentially on other terrestrial planets, providing initial oxidants and free oxygen, and be a component in the evolution of life and planetary habitability.

8.
Proc Natl Acad Sci U S A ; 120(13): e2210796120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947513

RESUMO

Rewiring of redox metabolism has a profound impact on tumor development, but how the cellular heterogeneity of redox balance affects leukemogenesis remains unknown. To precisely characterize the dynamic change in redox metabolism in vivo, we developed a bright genetically encoded biosensor for H2O2 (named HyPerion) and tracked the redox state of leukemic cells in situ in a transgenic sensor mouse. A H2O2-low (HyPerion-low) subset of acute myeloid leukemia (AML) cells was enriched with leukemia-initiating cells, which were endowed with high colony-forming ability, potent drug resistance, endosteal rather than vascular localization, and short survival. Significantly high expression of malic enzymes, including ME1/3, accounted for nicotinamide adenine dinucleotide phosphate (NADPH) production and the subsequent low abundance of H2O2. Deletion of malic enzymes decreased the population size of leukemia-initiating cells and impaired their leukemogenic capacity and drug resistance. In summary, by establishing an in vivo redox monitoring tool at single-cell resolution, this work reveals a critical role of redox metabolism in leukemogenesis and a potential therapeutic target.


Assuntos
Peróxido de Hidrogênio , Leucemia Mieloide Aguda , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oxirredução , Camundongos Transgênicos , Resistencia a Medicamentos Antineoplásicos/genética
9.
Proc Natl Acad Sci U S A ; 120(26): e2305378120, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339221

RESUMO

Hydrogen peroxide (H2O2) is an important green oxidant in the field of sewage treatment, and how to improve its activation efficiency and generate free radicals with stronger oxidation performance is a key issue in current research. Herein, we synthesized a Cu-doped α-Fe2O3 catalyst (7% Cu-Fe2O3) for activation of H2O2 under visible light for degradation of organic pollutants. The introduction of a Cu dopant changed the d-band center of Fe closer to the Fermi level, which enhanced the adsorption and activation of the Fe site for H2O2, and the cleavage pathway of H2O2 changed from heterolytic cleavage to homolytic cleavage, thereby improving the selectivity of •OH generation. In addition, Cu doping also promoted the light absorption ability of α-Fe2O3 and the separation of hole-electron pairs, which enhanced its photocatalytic activities. Benefiting from the high selectivity of •OH, 7% Cu-Fe2O3 exhibited efficient degradation activities against ciprofloxacin, the degradation rate was 3.6 times as much as that of α-Fe2O3, and it had good degradation efficiency for a variety of organic pollutants.

10.
J Biol Chem ; 300(1): 105573, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122901

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) oxidatively depolymerize recalcitrant polysaccharides, which is important for biomass conversion. The catalytic domains of many LPMOs are linked to carbohydrate-binding modules (CBMs) through flexible linkers, but the function of these CBMs in LPMO catalysis is not well understood. In this study, we utilized MtLPMO9L and MtLPMO9G derived from Myceliophthora thermophila to investigate the impact of CBMs on LPMO activity, with particular emphasis on their influence on H2O2 tolerance. Using truncated forms of MtLPMO9G generated by removing the CBM, we found reduced substrate binding affinity and enzymatic activity. Conversely, when the CBM was fused to the C terminus of the single-domain MtLPMO9L to create MtLPMO9L-CBM, we observed a substantial improvement in substrate binding affinity, enzymatic activity, and notably, H2O2 tolerance. Furthermore, molecular dynamics simulations confirmed that the CBM fusion enhances the proximity of the active site to the substrate, thereby promoting multilocal cleavage and impacting the exposure of the copper active site to H2O2. Importantly, the fusion of CBM resulted in more efficient consumption of H2O2 by LPMO, leading to improved enzymatic activity and reduced auto-oxidative damage of the copper active center.


Assuntos
Domínio Catalítico , Peróxido de Hidrogênio , Oxigenases de Função Mista , Polissacarídeos , Sordariales , Cobre/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Sordariales/enzimologia , Sordariales/metabolismo , Simulação de Dinâmica Molecular
11.
Plant J ; 117(5): 1356-1376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059663

RESUMO

Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .


Assuntos
Camellia sinensis , Colletotrichum , Ciclopentanos , Oxilipinas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Resistência à Doença/genética , Colletotrichum/fisiologia , Chá/metabolismo , Transdução de Sinais
12.
Plant J ; 118(4): 1119-1135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308390

RESUMO

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Assuntos
Homeostase , Peróxido de Hidrogênio , NADPH Oxidases , Oxirredução , Raízes de Plantas , Potássio , Ácido Salicílico , Tolerância ao Sal , Sódio , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Potássio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Regulação da Expressão Gênica de Plantas , Rhizophoraceae/fisiologia , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
EMBO Rep ; 24(8): e56439, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306027

RESUMO

Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.


Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Humanos , Idoso , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Retículo Endoplasmático/metabolismo , Estresse Oxidativo
14.
Mol Cell Proteomics ; 22(11): 100656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797745

RESUMO

Protein phosphorylation via serine/threonine protein kinases (Spk) is a widespread mechanism to adjust cellular processes toward changing environmental conditions. To study their role(s) in cyanobacteria, we investigated a collection of 11 completely segregated spk mutants among the 12 annotated Spks in the model cyanobacterium Synechocystis sp. PCC 6803. Screening of the mutant collection revealed that especially the mutant defective in SpkB encoded by slr1697 showed clear deviations regarding carbon metabolism, that is, reduced growth rates at low CO2 or in the presence of glucose, and different glycogen accumulation patterns compared to WT. Alterations in the proteome of ΔspkB indicated changes of the cell surface but also metabolic functions. A phospho-proteome analysis revealed the absence of any phosphorylation in two proteins, while decreased phosphorylation of the carboxysome-associated protein CcmM and increased phosphorylation of the allophycocyanin alpha subunit ApcA was detected in ΔspkB. Furthermore, the regulatory PII protein appeared less phosphorylated in the mutant compared to WT, which was verified in Western blot experiments, indicating a clearly delayed PII phosphorylation in cells shifted from nitrate-containing to nitrate-free medium. Our results indicate that SpkB is an important regulator in Synechocystis that is involved in phosphorylation of the PII protein and additional proteins.


Assuntos
Proteínas Serina-Treonina Quinases , Synechocystis , Proteínas Serina-Treonina Quinases/metabolismo , Synechocystis/metabolismo , Proteoma/metabolismo , Mutação , Aclimatação , Treonina/metabolismo , Serina/metabolismo , Proteínas de Bactérias/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(36): e2205562119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037332

RESUMO

Hydrogen peroxide (H2O2) molecules play important roles in many green chemical reactions. However, the high activation energy limits their application efficiency, and there is still huge controversy about the activation path of H2O2 molecules over the presence of *OOH intermediates. Here, we confirmed the formation of the key species *OOH in the heterogeneous system, via in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), isotope labeling, and theoretical calculation. In addition, we found that compared with *H2O2, *OOH was more conducive to the charge transfer behavior with the catalyst and the activation of an O-O bond. Furthermore, we proposed to improve the local coordination structure and electronic density of the YFeO3 catalyst by regulating the surface relaxation with Ti modification so as to reduce the activation barrier of H2O2 and to improve the production efficiency of •OH. As a result, the kinetics rates of the Fenton-like (photo-Fenton) reaction had been significantly increased several times. The •OH free radical activity mechanism and molecular transformation pathways of 4-chloro phenol (4-CP) were also revealed. This may provide a clearer vision for the further study of H2O2 activation and suggest a means of designing catalysts for efficient H2O2 activation.


Assuntos
Peróxido de Hidrogênio , Processos Fotoquímicos , Catálise , Peróxido de Hidrogênio/química , Ferro/química , Luz , Fenol
16.
Proc Natl Acad Sci U S A ; 119(32): e2206321119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914135

RESUMO

A fundamental understanding of extracellular microenvironments of O2 and reactive oxygen species (ROS) such as H2O2, ubiquitous in microbiology, demands high-throughput methods of mimicking, controlling, and perturbing gradients of O2 and H2O2 at microscopic scale with high spatiotemporal precision. However, there is a paucity of high-throughput strategies of microenvironment design, and it remains challenging to achieve O2 and H2O2 heterogeneities with microbiologically desirable spatiotemporal resolutions. Here, we report the inverse design, based on machine learning (ML), of electrochemically generated microscopic O2 and H2O2 profiles relevant for microbiology. Microwire arrays with suitably designed electrochemical catalysts enable the independent control of O2 and H2O2 profiles with spatial resolution of ∼101 µm and temporal resolution of ∼10° s. Neural networks aided by data augmentation inversely design the experimental conditions needed for targeted O2 and H2O2 microenvironments while being two orders of magnitude faster than experimental explorations. Interfacing ML-based inverse design with electrochemically controlled concentration heterogeneity creates a viable fast-response platform toward better understanding the extracellular space with desirable spatiotemporal control.


Assuntos
Microambiente Celular , Eletroquímica , Peróxido de Hidrogênio , Aprendizado de Máquina , Oxigênio , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Nano Lett ; 24(12): 3819-3825, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488397

RESUMO

Photosynthesis of H2O2 from seawater represents a promising pathway to acquire H2O2, but it is still restricted by the lack of a highly active photocatalyst. In this work, we propose a convenient strategy of regulating the number of benzene rings to boost the catalytic activity of materials. This is demonstrated by ECUT-COF-31 with adding two benzene rings as the connector, which can result in 1.7-fold enhancement in the H2O2 production rate relative to ECUT-COF-30 with just one benzene ring as the connector. The reason for enhancement is mainly due to the release of *OOH from the surface of catalyst and the final formation of H2O2 being easier in ECUT-COF-31 than in ECUT-COF-30. Moreover, ECUT-COF-31 provides a stable photogeneration of H2O2 for 70 h, and a theoretically remarkable H2O2 production of 58.7 mmol per day from seawater using one gram of photocatalyst, while the cost of the used raw material is as low as 0.24 $/g.

18.
Nano Lett ; 24(20): 6051-6060, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682868

RESUMO

Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 µmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 µmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.

19.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391135

RESUMO

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Assuntos
Hiperuricemia , Peroxidase , Humanos , Peroxidase/uso terapêutico , Urato Oxidase/uso terapêutico , Povidona/uso terapêutico , Hiperuricemia/tratamento farmacológico , Peróxido de Hidrogênio , Ácido Úrico/metabolismo , Oxirredutases , Corantes
20.
Plant J ; 115(4): 910-925, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37133286

RESUMO

Mesocotyl length (ML) is a crucial factor in determining the establishment and yield of rice planted through dry direct seeding, a practice that is increasingly popular in rice production worldwide. ML is determined by the endogenous and external environments, and inherits as a complex trait. To date, only a few genes have been cloned, and the mechanisms underlying mesocotyl elongation remain largely unknown. Here, through a genome-wide association study using sequenced germplasm, we reveal that natural allelic variations in a mitochondrial transcription termination factor, OsML1, predominantly determined the natural variation of ML in rice. Natural variants in the coding regions of OsML1 resulted in five major haplotypes with a clear differentiation between subspecies and subpopulations in cultivated rice. The much-reduced genetic diversity of cultivated rice compared to the common wild rice suggested that OsML1 underwent selection during domestication. Transgenic experiments and molecular analysis demonstrated that OsML1 contributes to ML by influencing cell elongation primarily determined by H2 O2 homeostasis. Overexpression of OsML1 promoted mesocotyl elongation and thus improved the emergence rate under deep direct seeding. Taken together, our results suggested that OsML1 is a key positive regulator of ML, and is useful in developing varieties for deep direct seeding by conventional and transgenic approaches.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Sequência de Bases , Variação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa