Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Vet Res ; 52(1): 8, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436086

RESUMO

Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Influenza Aviária/virologia , Células A549/virologia , Animais , Embrião de Galinha/virologia , Galinhas , Glicosilação , Testes de Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Influenza Aviária/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Reação em Cadeia da Polimerase em Tempo Real
2.
Front Microbiol ; 14: 1211355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405154

RESUMO

Waterfowl, such as ducks, are natural hosts for avian influenza viruses (AIVs) and act as a bridge for transmitting the virus to humans or susceptible chickens. Since 2013, chickens and ducks have been threatened by waterfowl-origin H5N6 subtype AIVs in China. Therefore, it is necessary to investigate the genetic evolution, transmission, and pathogenicity of these viruses. In this study, we determined the genetic characteristics, transmission, and pathogenicity of waterfowl-origin H5N6 viruses in southern China. The hemagglutinin (HA) genes of H5N6 viruses were classified into the MIX-like branch of clade 2.3.4.4h. The neuraminidase (NA) genes belonged to the Eurasian lineage. The PB1 genes were classified into MIX-like and VN 2014-like branches. The remaining five genes were clustered into the MIX-like branch. Therefore, these viruses belonged to different genotypes. The cleavage site of the HA proteins of these viruses was RERRRKR/G, a molecular characteristic of the H5 highly pathogenic AIV. The NA stalk of all H5N6 viruses contained 11 amino acid deletions at residues 58-68. All viruses contained 627E and 701D in the PB2 proteins, which were molecular characteristics of typical bird AIVs. Furthermore, this study showed that Q135 and S23 viruses could replicate systematically in chickens and ducks. They did not cause death in ducks but induced mild clinical signs in them. All the infected chickens showed severe clinical signs and died. These viruses were shed from the digestive and respiratory tracts and transmitted horizontally in chickens and ducks. Our results provide valuable information for preventing H5N6 avian influenza outbreaks.

3.
Viruses ; 14(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36016374

RESUMO

The clade 2.3.4.4b H5N8 avian influenza viruses (AIVs) have caused the loss of more than 33 million domestic poultry worldwide since January 2020. Novel H5N6 reassortants with hemagglutinin (HA) from clade 2.3.4.4b H5N8 AIVs are responsible for multiple human infections in China. Therefore, we conducted an epidemiological survey on waterfowl farms in Sichuan and Guangxi provinces and performed a comprehensive spatiotemporal analysis of H5N6 AIVs in China. At the nucleotide level, the H5N6 AIVs isolated in the present study exhibited high homology with the H5N6 AIVs that caused human infections. Demographic history indicates that clade 2.3.4.4b seemingly replaced clade 2.3.4.4h to become China's predominant H5N6 AIV clade. Based on genomic diversity, we classified clade 2.3.4.4b H5N6 AIV into ten genotypes (2.3.4.4bG1-G10), of which the 2.3.4.4bG5 and G10 AIVs can cause human infections. Phylogeographic results suggest that Hong Kong and Jiangxi acted as important epicentres for clades 2.3.4.4b and 2.3.4.4h, respectively. Taken together, our study provides critical insight into the evolution and spread of H5N6 AIVs in China, which indicates that the novel 2.3.4.4b reassortants pose challenges for public health and poultry.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , China/epidemiologia , Mapeamento Geográfico , Humanos , Influenza Aviária/epidemiologia , Filogenia , Aves Domésticas
4.
PNAS Nexus ; 1(3): pgac085, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741455

RESUMO

Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.

5.
Front Microbiol ; 12: 628545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584629

RESUMO

Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in the world. Some of these viruses acquired internal genes from other subtype avian influenza viruses (AIVs) such as H9 and H6 for the generation of novel reassortant viruses and continually circulated in poultry. Here, we applied a duck-origin virus DK87 and a chicken-origin virus CK66 to assess the biological characteristics of novel reassortant H5N6 HPAIVs and its pathogenesis in ducks. A genetic analysis indicated that the HA genes of the two H5N6 HPAIVs were closely related to the H5 viruses of clade 2.3.4.4 circulating in Eastern Asia and classified into H5 AIV/Eastern Asia (EA)-like lineage. Their NA genes fell into Eurasian lineage had close relationship with those of H5N6 viruses circulating in China, Laos, Vietnam, Japan, and Korea. All internal genes of DK87 were aggregated closely with H5 AIV/EA-like viruses. The internal genes (PB1, PA, NP, M, and NS) of CK66 were derived from H9N2 AIV/SH98-like viruses and the PB2 were derived from H5 AIV/EA-like viruses. These results indicate that clade 2.3.4.4 H5N6 AIVs have continually evolved and recombined with the H9N2 viruses circulating in Southern China. Pathogenicity test showed that the two viruses displayed a broader tissue distribution in ducks and caused no clinical signs. These results indicated that ducks were permissive for the replication of the chicken-origin reassortant virus CK66 without prior adaptation, but the duck-origin virus DK87-inoculated ducks showed significantly higher viral titers in some organs than the CK66-inoculated ducks at 5 day post-inoculated (DPI). The recovery of viruses from oropharyngea and cloacal swabs of contacted ducks indicated that they transmitted in native ducks by direct contact. Quantitative reverse transcription PCR (qRT-PCR) results revealed that the immune-relative genes (PRRs, IFNs, Mx-1, IL-6, and IL-8) in the lungs of inoculated ducks were expressed regardless of virus origin, but the expression of these genes was significantly higher in response to infection with the DK87 virus compared to the CK66 virus at 3 DPI. Overall, we should provide further insights into how clade 2.3.4.4 H5N6 AIVs undergo genetic and pathogenic variations to prevent outbreaks of this disease.

6.
Front Microbiol ; 10: 1782, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428075

RESUMO

Clade 2.3.4.4 H5 avian influenza viruses (AIVs) are widely prevalent and of significant concern to the poultry industry and public health in China. Nowadays, the clade 2.3.4.4 H5N6 virus has become a dominant AIV subtype among domestic ducks in southern China. We found that waterfowl-origin clade 2.3.4.4 H5N6 viruses (A/goose/Guangdong/16568/2016, GS16568 and A/duck/Guangdong/16873/2016, DK16873) isolated from southern China in 2016 could replicate in multiple organs of inoculated ducks. DK16873 virus caused mild infections and killed 2/5 of inoculated ducks, and GS16568 virus did not kill inoculated ducks. In addition, the two viruses could be transmitted via direct contact between ducks. DK16873 and GS16568 viruses killed 2/5 and 1/5 of contact ducks, respectively. Furthermore, ducks inoculated with the two H5N6 viruses exhibited different expressions of immune-related genes in their lungs. The expression of RIG-I, TLR3 and IL6 was significantly upregulated at 12 h post-inoculation (HPI) and most of the tested immune-related genes were significantly upregulated at 3 days post-inoculation (DPI). Notably, the expression of RIG-I and IL-6 in response to DK16873 virus was significantly higher than for GS16568 virus at 12 HPI and 3 DPI. Our research have provided helpful information about the pathogenicity, transmission and immune-related genes expression in ducks infected with new H5N6 AIVs.

7.
Viruses ; 11(11)2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717638

RESUMO

H5Nx viruses have continuously emerged in the world, causing poultry industry losses and posing a potential public health risk. Here, we studied the phylogeny, pathogenicity, transmission, and immune response of four H5N6 avian influenza viruses in chickens and mice, which were isolated from waterfowl between 2013 and 2014. Their HA genes belong to Clade 2.3.4.4, circulated in China since 2008. Their NA genes fall into N6-like/Eurasian sublineage. Their internal genes originated from different H5N1 viruses. The results suggested that the four H5N6 viruses were reassortants of the H5N1 and H6N6 viruses. They cause lethal infection with high transmission capability in chickens. They also cause mild to severe pathogenicity in mice and can spread to the brain through the blood-brain barrier. During the infection, the viruses result in the up-regulation of PRRs and cytokine in brains and lungs of chickens and mice. Our results suggested that the high viral loads of several organs may result in disease severity in chickens and mice; there were varying levels of cytokines induced by the H5N6 viruses with different pathogenicity in chickens and mice.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Animais , Galinhas , Citocinas/metabolismo , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Camundongos , Neuraminidase/genética , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Eliminação de Partículas Virais
8.
Dev Comp Immunol ; 74: 60-68, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28395999

RESUMO

Despite the apparent lack of a feline influenza virus lineage, cats are susceptible to infection by influenza A viruses. Here, we characterized in vitro A/feline/Guangdong/1/2015, an H5N6 avian influenza virus recently isolated from cats. A/feline/Guangdong/1/2015 replicated to high titers and caused CPE in feline kidney cells. We determined that infection with A/feline/Guangdong/1/2015 did not activate the IFN-ß promoter, but inhibited it by blocking the activation of NF-κB and IRF3. We also determined that the viral NS1 protein mediated the block, and that the dsRNA binding domain of NS1 was essential to perform this function. In contrast to treatment after infection, cells pretreated with IFN-ß suppressed viral replication. Our findings provide an example of an H5N6 influenza virus suppressing IFN production, which might be associated with interspecies transmission of avian influenza viruses to cats.


Assuntos
Vírus da Influenza A/fisiologia , Interferon beta/metabolismo , Infecções por Orthomyxoviridae/imunologia , Proteínas não Estruturais Virais/metabolismo , Animais , Gatos , Células Cultivadas , Evasão da Resposta Imune , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , NF-kappa B/metabolismo , Transdução de Sinais , Replicação Viral
9.
Cell Host Microbe ; 20(6): 810-821, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27916476

RESUMO

Constant surveillance of live poultry markets (LPMs) is currently the best way to predict and identify emerging avian influenza viruses (AIVs) that pose a potential threat to public health. Through surveillance of LPMs from 16 provinces and municipalities in China during 2014-2016, we identified 3,174 AIV-positive samples and isolated and sequenced 1,135 AIVs covering 31 subtypes. Our analysis shows that H5N6 has replaced H5N1 as one of the dominant AIV subtypes in southern China, especially in ducks. Phylogenetic analysis reveals that H5N6 arose from reassortments of H5 and H6N6 viruses, with the hemagglutinin and neuraminidase combinations being strongly lineage specific. H5N6 viruses constitute at least 34 distinct genotypes derived from various evolutionary pathways. Notably, genotype G1.2 virus, with internal genes from the chicken H9N2/H7N9 gene pool, was responsible for at least five human H5N6 infections. Our findings highlight H5N6 AIVs as potential threats to public health and agriculture.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Prevalência , Agricultura , Animais , Sequência de Bases , Galinhas/virologia , China/epidemiologia , Cidades , Columbidae/virologia , Patos/virologia , Monitoramento Epidemiológico , Gansos/virologia , Genes Virais/genética , Genoma Viral , Genótipo , Mapeamento Geográfico , Hemaglutininas , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase , Filogenia , Aves Domésticas/virologia , Saúde Pública , RNA Viral/genética , Vírus Reordenados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa