Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Virol ; 97(2): e0137922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749072

RESUMO

Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Aminoácidos/genética , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Filogenia , Aves Domésticas
2.
Avian Pathol ; 53(5): 390-399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38563198

RESUMO

Avian influenza (AI), caused by H9N2 subtype avian influenza virus (AIV), poses a serious threat to poultry farming and public health due to its transmissibility and pathogenicity. The PB2 protein is a major component of the viral RNA polymerase complex. It is of great importance to identify the antigenic determinants of the PB2 protein to explore the function of the PB2 protein. In this study, the PB2 sequence of H9N2 subtype AIV, from 1090 to 1689 bp, was cloned and expressed. The recombinant PB2 protein with cutting gel was used to immunize BALB/c mice. After cell fusion, the hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the PB2 protein were screened by indirect ELISA and western blotting, and the antigenic epitopes of mAbs were identified by constructing truncated overlapping fragments in the PB2 protein of H9N2 subtype AIV. The results showed that three hybridoma cell lines (4B7, 4D10, and 5H1) that stably secreted mAbs specific to the PB2 protein were screened; the heavy chain of 4B7 was IgG2α, those of 4D10 and 5H1 were IgG1, and all three mAbs had kappa light chain. Also, the minimum B-cell epitope recognized was 475LRGVRVSK482 and 528TITYSSPMMW537. Homology analysis showed that these two epitopes were conserved among the different subtypes of AIV strains and located on the surface of the PB2 protein. The above findings provide an experimental foundation for further investigation of the function of the PB2 protein and developing monoclonal antibody-based diagnostic kits.


Assuntos
Anticorpos Monoclonais , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Camundongos Endogâmicos BALB C , Proteínas Virais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Animais , Anticorpos Monoclonais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Camundongos , Influenza Aviária/virologia , Influenza Aviária/imunologia , Epitopos de Linfócito B/imunologia , Hibridomas , RNA Polimerase Dependente de RNA/genética , Anticorpos Antivirais/imunologia , Galinhas/virologia , Feminino
3.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473897

RESUMO

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
4.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731436

RESUMO

In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-ß, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.


Assuntos
Antivirais , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Matrinas , Transdução de Sinais , Receptor 3 Toll-Like , Animais , Cães , Humanos , Antivirais/farmacologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/imunologia , Células Madin Darby de Rim Canino , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo
5.
Avian Pathol ; 52(5): 377-387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37581283

RESUMO

H9N2 subtype of avian influenza virus (AIV) is primarily a bird virus, which is widespread in clinical avian disease, and reported in cases of human infection. As one of the surface proteins of AIV, the neuraminidase (NA) protein plays an important role mainly in viral budding. However, vaccine development and detection methods for NA of H9N2 AIVs are in urgent clinical need. In this study, a truncated NA gene (205-900 bp) was cloned from the NA sequence of H9N2 strain, and then expressed using pET-28a (+) vector. This purified recombinant NA protein was used to immunize BALB/c mice, and the monoclonal antibodies were screened through the indirect enzyme-linked immunosorbent assay (ELISA). Next, eight prokaryotic expression vectors were constructed for epitope identification. After cell fusion, three hybridoma cell lines producing the antibodies special to NA protein were screened by ELISA, western blotting, and indirect immunofluorescence; these were named 1B10, 2B6, and 5B2, respectively. Epitope scanning techniques were used to identify three B-cell epitopes recognized by these three monoclonal antibodies, 196KNATASIIYDGMLVD210, 210DSIGSWSKNIL220 and 221RTQESECVCI230. The subsequent homology analysis revealed the three epitopes were highly conserved in H9N2 AIV strains. The structural predictions of the antigenic epitopes indicated that all three epitopes were located in the catalytic region of NA. These results provide a basis for studying the function of the NA protein of H9N2 AIV and technical support for the development of a universal detection method based on anti-NA monoclonal antibodies.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Camundongos , Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H9N2/genética , Neuraminidase/genética , Proteínas Recombinantes/genética
6.
Microb Pathog ; 158: 105095, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34280501

RESUMO

Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.


Assuntos
Adjuvantes Imunológicos , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Animais , Anticorpos Antivirais , Galinhas , Epitopos de Linfócito B , Epitopos de Linfócito T , Influenza Aviária/prevenção & controle , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas
7.
Vet Res ; 51(1): 132, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069243

RESUMO

MicroRNA (miRNA) plays a key role in virus-host interactions. Here, we employed deep sequencing technology to determine cellular miRNA expression profiles in chicken dendritic cells infected with H9N2 avian influenza virus (AIV). A total of 66 known and 36 novel miRNAs were differently expressed upon H9N2 infection, including 72 up-regulated and 30 down-regulated miRNAs. Functional analysis showed that the predicted targets of these miRNAs were significantly enriched in several pathways including endocytosis, notch, lysosome, p53, RIG-I-like and NOD-like receptor signaling pathways. These data provide valuable information for further investigating the roles of miRNA in AIV pathogenesis and host defense response.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , MicroRNAs/genética , Doenças das Aves Domésticas/virologia , Animais , Galinhas/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Regulação para Cima , Replicação Viral
8.
Avian Pathol ; 49(5): 496-506, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835500

RESUMO

Salmonella and avian influenza virus are important pathogens affecting the poultry industry and human health worldwide. In this experimental study, we evaluated the consequences of co-infection of Salmonella enteritidis (SE) with H9N2 avian influenza virus (H9N2-AIV) in chickens. Four groups were included: control group, H9N2-AIV group, H9N2-AIV + SE group, and SE group. Infected chickens were intranasally inoculated with H9N2-AIV at 21 days of age and then orally administered SE on the same day. The birds were monitored for clinical signs, mortality rates, and alterations in body weight. Sera, intestinal fluids, oropharyngeal, and cloacal swabs, and tissue samples were collected at 2, 6, 10, and 14 days post-infection (dpi). Significant increases in clinical signs and mortality rates were observed in the H9N2-AIV + SE group. Moreover, chickens with co-infection showed a significant change in body weight. SE faecal shedding and organ colonization were significantly higher in the H9N2-AIV + SE group than in the SE group. H9N2-AIV infection compromised the systemic and mucosal immunity against SE, as evidenced by a significant decrease in lymphoid organ indices as well as systemic antibody and intestinal immunoglobulin A (IgA) responses to SE and a significant increase in splenic and bursal lesion scores. Moreover, SE infection significantly increased shedding titres and duration of H9N2-AIV. In conclusion, this is the first report of co-infection of SE with H9N2-AIV in chickens, which leads to increased pathogenicity, SE faecal shedding and organ colonization, and H9N2-AIV shedding titre and duration, resulting in substantial economic losses and environmental contamination, ultimately leading to increased zoonoses.


Assuntos
Galinhas/microbiologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/fisiologia , Animais , Coinfecção/veterinária , Fezes/microbiologia , Imunoglobulina A/imunologia , Influenza Aviária/mortalidade , Intestinos/microbiologia , Doenças das Aves Domésticas/mortalidade , Distribuição Aleatória , Salmonelose Animal/mortalidade , Eliminação de Partículas Virais
9.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836826

RESUMO

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

10.
Acta Vet Hung ; 68(3): 328-335, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33185568

RESUMO

Despite the use of wide-scale vaccination programmes against the H9N2 virus, enzootic outbreaks of H9N2 avian influenza (AI) have often occurred and caused serious nationwide economic losses, particularly in broiler chickens. In this study, the haemagglutinin (HA) and neuraminidase (NA) genes of nine recent H9N2s and a common vaccine strain were fully sequenced and compared with other representative Iranian viruses. Phylogenetic analysis revealed that all Iranian viruses were grouped into the G1 sub-lineage with different clusters in which recent isolates (2014-2017) formed a distinct cluster compared to the vaccine group (1998-2004). All Iranian H9N2s exhibited low pathogenicity AI connecting peptide feature with an R/KSSR motif. Amino acid 226, located in the 220 loop of the receptor binding site, was leucine among the recent Iranian viruses, a characteristic of human influenza viruses. With an overall gradual increase in the genetic diversity of H9N2s, Bayesian skyline plots of Iranian HA and NA genes depicted a fluctuation and a relative stable situation, respectively. It is recommended to apply constant surveillance to assess any increase in viral human adaptation and evolutionary changes in circulating field H9N2s. Moreover, antigenic characterisation of the prevailing H9N2 viruses seems to be necessary for evaluating the possible antigenic drift from the vaccine strain.


Assuntos
Galinhas/virologia , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H9N2/genética , Neuraminidase/genética , Proteínas Virais/genética , Animais , Fazendas , Irã (Geográfico)
11.
Virol J ; 16(1): 135, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718675

RESUMO

BACKGROUND: H9N2 influenza viruses continuously circulate in multiple avian species and are repeatedly transmitted to humans, posing a significant threat to public health. To investigate the adaptation ability of H9N2 avian influenza viruses (AIVs) to mammals and the mutations related to the host switch events, we serially passaged in mice two H9N2 viruses of different HA lineages - A/Quail/Hong Kong/G1/97 (G1) of the G1-like lineage and A/chicken/Shandong/ZB/2007 (ZB) of the BJ/94-like lineage -and generated two mouse-adapted H9N2 viruses (G1-MA and ZB-MA) that possessed significantly higher virulence than the wide-type viruses. FINDING: ZB-MA replicated systemically in mice. Genomic sequence alignment revealed 10 amino acid mutations coded by 4 different gene segments (PB2, PA, HA, and M) in G1-MA compared with the G1 virus and 23 amino acid mutations in 5 gene segments (PB1, PA, HA, M, and NS) in ZB-MA compared to ZB virus, indicating that the mutations in the polymerase, HA, M, and NS genes play critical roles in the adaptation of H9N2 AIVs to mammals, especially, the mutations of M1-Q198H and M1-A239T were shared in G1-MA and ZB-MA viruses. Additionally, several substitutions showed a higher frequency in human influenza viruses compared with avian viruses. CONCLUSIONS: Different lineages of H9N2 could adapt well in mice and some viruses could gain the ability to replicate systemically and become neurovirulent. Thus, it is essential to pay attention to the mammalian adaptive evolution of the H9N2 virus.


Assuntos
Adaptação Fisiológica/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Genoma Viral/genética , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas Virais/genética , Virulência , Replicação Viral
12.
J Gen Virol ; 99(1): 36-43, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29219807

RESUMO

The pathogenesis of H9N2 subtype avian influenza virus (AIV) infection in hens is often related to oviduct tissue damage. Our previous study suggested that H9N2 AIV induces cellular apoptosis by activating reactive oxygen species (ROS) accumulation and mitochondria-mediated apoptotic signalling in chicken oviduct epithelial cells (COECs). Heme oxygenase-1 (HO-1) is an inducible enzyme that exerts protective effects against oxidative stress and activated HO-1 was recently shown to have antiviral activity. To study the potential involvement of HO-1 in H9N2 AIV proliferation, the role of its expression in H9N2-infected COECs was further investigated. Our results revealed that H9N2 AIV infection significantly up-regulated the expression of HO-1 and that HO-1 down-regulation by ZnPP, a classical inhibitor of HO-1, could inhibit H9N2 AIV replication in COECs. Similarly, the small interfering RNA (siRNA)-mediated knockdown of HO-1 also markedly decreased the virus production in H9N2-infected COECs. In contrast, adenoviral-mediated over-expression of HO-1 concomitantly promoted H9N2 AIV replication. Taken together, our study demonstrated the involvement of HO-1 in AIV H9N2 proliferation, and these findings suggested that HO-1 is a potential target for inhibition of AIV H9N2 replication.


Assuntos
Proteínas Aviárias/genética , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Heme Oxigenase-1/genética , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Aviárias/agonistas , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/metabolismo , Galinhas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oviductos/metabolismo , Oviductos/virologia , Estresse Oxidativo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Virol J ; 14(1): 56, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302119

RESUMO

BACKGROUND: Newcastle disease (ND) and avian influenza subtype H9N2 (H9N2 AI) are two of the most important diseases of poultry, causing severe economic losses in the global poultry industry. Vaccination is an effective way to prevent and control the spread of ND virus (NDV) and H9N2 AI virus (AIV), but the antigenic differences between the current circulating strains and the vaccine strains might account for recent ND and H9N2 AI outbreaks in vaccinated poultry flocks. METHODS: We developed an inactivated bivalent H9N2 and NDV vaccine based on the current prevalent strains of H9N2 AIV and NDV in China and evaluated its efficacy in chickens in this study. RESULTS: The results indicated that the inactivated bivalent vaccine could induce a fast antibody response in vaccinated chickens. The hemagglutination inhibition (HI) titer in the sera increased rapidly, and the highest HI titer was observed at 4 weeks post-vaccination (wpv) with a mean titre of 8.6 log2 for NDV and 9.5 log2 for H9N2. Up until 15 wpv, HI titers were still detectable at a high level of over 6 log2. The immunized chickens showed no signs of disease after challenge at 3 wpv with the prevalent strains of NDV and H9N2 AIV isolated in 2012-2014. Moreover, viral shedding was completely inhibited in vaccinated chickens after challenge with H9N2 AIV and inhibited by at least 90% with NDV compared to the controls at 5dpc. CONCLUSIONS: Our findings suggest that the inactivated NDV and H9N2 vaccine induces a fast and strong antibody response in vaccinated chickens and is efficacious in poultry against NDVs and H9N2 AIVs.


Assuntos
Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/prevenção & controle , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Galinhas , China , Influenza Aviária/imunologia , Influenza Aviária/patologia , Doença de Newcastle/imunologia , Doença de Newcastle/patologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais
14.
Avian Dis ; 59(2): 263-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26473677

RESUMO

This study related the replication of an H9N2 avian influenza virus in chickens to the induction of host acute immune response after aerosol or intranasal inoculation with the virus. On 1, 2, 4, and 7 days postinoculation (dpi), oropharyngeal swabs and tissue specimens of trachea, lungs, spleen, and cecal tonsils were collected for quantification of viral RNA. Expression of cytokine genes in lungs, spleen, and cecal tonsils was quantified by reverse transcriptase-PCR. Virus was detected in all oropharyngeal swabs up to 4 dpi in chickens from both inoculation groups. However, virus was detected more frequently (P<0.05) and in higher titers (1-4 log difference) in specimens of trachea and lungs from the group exposed to aerosols than from the group given intranasal drops. In accord with viral replication findings, expressions of cytokine genes interleukin (IL)-1ß (on 2 and 7 dpi), IL-6 (on 2 dpi), and interferon (IFN)-γ (on 2 and 4 dpi) were up-regulated to a significantly higher level (P<0.05) in lung tissue specimens from the group exposed to virus aerosol than from controls that were given saline intranasally. Only IFN-γ on 1 dpi was up-regulated (P<0.05) above that of controls in lung tissue specimens from the group given intranasal drops of virus. In comparison, replication of the virus and induction of IL-1ß and IL-6 genes were limited in spleen and cecal tonsil tissue specimens from both groups of chickens inoculated with the virus. These findings indicate that virus administered in aerosols was more efficient than virus administered as intranasal drops, in infecting the lower respiratory tract and in inducing the activity of the cytokine genes. The intense respiratory infection caused by virus aerosols might increase the shedding and transmission of the H9N2 virus in chickens.


Assuntos
Galinhas , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/virologia , Replicação Viral , Administração Intranasal/veterinária , Aerossóis , Animais , Citocinas/genética , Influenza Aviária/imunologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos
15.
Viruses ; 16(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275973

RESUMO

(1) Background: Avian influenza has attracted widespread attention because of its severe effect on the poultry industry and potential threat to human health. The H9N2 subtype of avian influenza viruses was the most prevalent in chickens, and there are several commercial vaccines available for the prevention of the H9N2 subtype of avian influenza viruses. However, due to the prompt antigenic drift and antigenic shift of influenza viruses, outbreaks of H9N2 viruses still continuously occur, so surveillance and vaccine updates for H9N2 subtype avian influenza viruses are particularly important. (2) Methods: In this study, we constructed a stable Chinese hamster ovary cell line (CHO) to express the H9 hemagglutinin (HA) protein of the major prevalent H9N2 strain A/chicken/Daye/DY0602/2017 with genetic engineering technology, and then a subunit H9 avian influenza vaccine was prepared using the purified HA protein with a water-in-oil adjuvant. (3) Results: The results showed that the HI antibodies significantly increased after vaccination with the H9 subunit vaccine in specific-pathogen-free (SPF) chickens with a dose-dependent potency of the immunized HA protein, and the 50 µg or more per dose HA protein could provide complete protection against the H9N2 virus challenge. (4) Conclusions: These results indicate that the CHO expression system could be a platform used to develop the subunit vaccine against H9 influenza viruses in chickens.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Animais , Humanos , Cricetinae , Vírus da Influenza A Subtipo H9N2/genética , Galinhas , Hemaglutininas , Cricetulus , Células CHO , Anticorpos Antivirais , Vacinas de Subunidades Antigênicas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
16.
Poult Sci ; 103(8): 103885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851182

RESUMO

Avian influenza, particularly the H9N2 subtype, presents significant challenges to poultry health, underscoring the need for effective antiviral interventions. This study explores the antiviral capabilities of Belamcanda extract, a traditional Chinese medicinal herb, against H9N2 Avian influenza virus (AIV) in specific pathogen-free (SPF) chicks. Through a comprehensive approach, we evaluated the impact of the extract on cytokine modulation and crucial immunological signaling pathways, essential for understanding the host-virus interaction. Our findings demonstrate that Belamcanda extract significantly modulates the expression of key inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6), which are pivotal to the host's response to H9N2 AIV infection. Western blot analysis further revealed that the extract markedly reduces the expression of critical immune signaling molecules such as toll-like receptor 3 (TLR3), TIR-domain-containing adapter-inducing interferon-ß (TRIF), and nuclear factor kappa B (NF-κB). These insights into the mechanisms by which Belamcanda extract influences host immune responses and hinders viral replication highlight its potential as an innovative antiviral agent for poultry health management. The study advances our comprehension of natural compounds' antiviral mechanisms and lays the groundwork for developing strategies to manage viral infections in poultry. The demonstrated ability of Belamcanda extract to modulate immune responses and inhibit viral replication establishes it as a promising candidate for future antiviral therapy development, especially in light of the need for effective treatments against evolving influenza virus strains and the critical demand for enhanced poultry health management strategies.


Assuntos
Antivirais , Galinhas , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/virologia , Influenza Aviária/tratamento farmacológico , Antivirais/farmacologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/imunologia , Organismos Livres de Patógenos Específicos , Inflamação/tratamento farmacológico , Inflamação/veterinária , Inflamação/virologia , Citocinas/metabolismo , Citocinas/genética , Extratos Vegetais/farmacologia
17.
Vet Microbiol ; 296: 110188, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018942

RESUMO

H9N2 avian influenza virus (AIV), one of the predominant subtypes circulating in the poultry industry, inflicts substantial economic damage. Mutations in the hemagglutinin (HA) and neuraminidase (NA) proteins of H9N2 frequently alter viral antigenicity and replication. In this paper, we analyzed the HA genetic sequences and antigenic properties of 26 H9N2 isolates obtained from chickens in China between 2012 and 2019. The results showed that these H9N2 viruses all belonged to h9.4.2.5, and were divided into two clades. We assessed the impact of amino acid substitutions at HA sites 145, 149, 153, 164, 167, 168, and 200 on antigenicity, and found that a mutation at site 164 significantly modified antigenic characteristics. Amino acid variations at sites 145, 153, 164 and 200 affected virus's hemagglutination and the growth kinetics in mammalian cells. These results underscore the critical need for ongoing surveillance of the H9N2 virus and provide valuable insights for vaccine development.


Assuntos
Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Animais , Galinhas/virologia , Influenza Aviária/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , China , Substituição de Aminoácidos , Doenças das Aves Domésticas/virologia , Mutação , Antígenos Virais/imunologia , Antígenos Virais/genética , Replicação Viral , Filogenia , Neuraminidase/genética , Neuraminidase/imunologia , Aminoácidos/genética
18.
Front Vet Sci ; 11: 1369863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605918

RESUMO

Introduction: This study focuses on evaluating the therapeutic efficacy of cecropin AD, an antimicrobial peptide, against H9N2 avian influenza virus (AIV) in chickens. Given the global impact of H9N2 AIV on poultry health, identifying effective treatments is crucial. Methods: To assess the impact of cecropin AD, we conducted in vivo experiments involving 108 5-week-old chickens divided into control, infected, and various treatment groups based on cecropin AD dosage levels (high, medium, and low). The methodologies included hemagglutination (HA) tests for viral titers, histopathological examination and toluidine blue (TB) staining for lung pathology, real-time PCR for viral detection, and enzyme-linked immunosorbent assays for measuring serum levels of inflammatory markers. Results: The findings revealed that cecropin AD substantially reduced lung pathology and viral load, especially at higher dosages, comparing favorably with the effects seen from conventional treatments. Moreover, cecropin AD effectively modulated mast cell activity and the levels of inflammatory markers such as IL-6, TNF-α, IFN-γ, and 5-HT, indicating its potential to diminish inflammation and viral spread. Discussion: Cecropin AD presents a significant potential as an alternative treatment for H9N2 AIV in chickens, as evidenced by its ability to lessen lung damage, decrease viral presence, and adjust immune responses. This positions cecropin AD as a promising candidate for further exploration in the management of H9N2 AIV infections in poultry.

19.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
20.
Vet Microbiol ; 284: 109832, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473515

RESUMO

H9N2 virus has become the most widespread subtype of avian influenza in Chinese poultry. Although many studies have been published on this disease, the pathogenesis of the H9N2 virus remains to be fully understood. In our previous work, we identified 44 viral strains with 67-76 amino acid deletions in the neuraminidase protein (NA∆67-76) from trachea and lung tissues after 20 successive generations in vaccinated chickens. Interestingly, these 10 amino acid deletions are located in the stalk of the NA protein, and all mutations were unique to the viruses under the selection pressure of vaccine antibodies. To investigate the effect of NA∆67-76 on the H9N2 virus, the NA∆67-76 deletion mutant (rF/NAΔ67-76) was constructed in the H9N2 virus A/Chicken/Shanghai/F/98 (F/98) to assess the phenotypic changes between the parental and mutant strains. The results showed that the recombinant virus rF/NAΔ67-76 had no significantly effect on the antigenicity of the virus or on the infectivity of the host cells, but it significantly inhibited the release of virions from host cells. In addition, rF/NAΔ67-76 efficiently enhanced the neuraminidase activity and improved the receptor binding ability of the virus, indicating that the influence of receptor binding ability on the rF/NAΔ67-76 virus is much greater than that of neuraminidase activity. Furthermore, this study revealed that rF/NAΔ67-76 reduced the viral replication ability at 6 and 12 h post-infection, but improved it at 24, 48, and 72 h post-infection. Chicken experiments showed that rF/NAΔ67-76 exhibits a much higher tissue tropism for the trachea rather than lung tissue. rF/NAΔ67-76 still had the ability to infect the upper respiratory tract through aerosol, but its cloaca replication capacity was significantly reduced. Both in vivo and in vitro experiments confirmed that rF/NAΔ67-76 could produce a stronger innate immune response after infecting cells and chickens, especially significantly enhancing the transcription levels of TLR3, TLR4, TLR7, TLR21, MDA5, and NLRP3. Altogether, the results of this study propose that antibody selection pressure plays an important role in the evolution of H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas , Neuraminidase/genética , Neuraminidase/metabolismo , Aminoácidos/metabolismo , China , Tropismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa