RESUMO
The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores Imunológicos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Chaperonas Moleculares/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Células Tumorais CultivadasRESUMO
Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.
Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Macaca mulatta , Camundongos , Microscopia Confocal , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologiaRESUMO
BACKGROUND: Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS: In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS: These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Apoptose/genética , Proliferação de Células , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismoRESUMO
The investigation of perinatal transmission of HPV is vital for early screening of cervical/oral cancers. Here, transmission of HPV from the pregnant women to their infants was studied. p53 and Bcl-2 expressions and their correlations with HPV infection were examined. HPV infection was detected in the cervical and oral swabs of 135 mother-baby pairs employing both PCR and HC-II methods. 1 year follow-up with an interim visit at 3 months for mothers and 6 months for babies was performed. Immunocytochemistry of p53 and Bcl-2 using the streptavidin-biotin peroxidase method was performed. Prevalence of HPV infection in the mothers was 28.14%, (38/135) and 30.37% (41/135) determined by the PCR and HC-II methods respectively. HPV 16 and/or 18 was identified in 81.57% (31/38) and 82.92% (34/41) of the HPV + women estimated by PCR and HC-II methods respectively. Prevalence rate of HPV 16 among the HPV + pregnant women was 63.15% (24/38) and 65.85% (27/41) determined by PCR and HC-II methods respectively. The frequency of perinatal transmission was 21.05% (8/38) and 21.95% (9/41) determined by PCR and HC-II methods respectively at birth. The HPV + infants in the follow up study cleared the infection within 6 weeks. An abnormal nuclear expression of p53 and cytoplasmic expression of Bcl-2 were observed in the HPV + mother-baby pairs. Cesarean section did not protect the infants against perinatal HPV transmission. The detection of p53 and Bcl-2 proteins in the HPV + mother-baby pairs suggests that these biomarkers may be important in the early screening of oral/cervix cancers in positive cases.
Assuntos
Transmissão Vertical de Doenças Infecciosas , Infecções por Papillomavirus , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Supressora de Tumor p53 , Humanos , Feminino , Infecções por Papillomavirus/virologia , Gravidez , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Adulto , Lactente , Complicações Infecciosas na Gravidez/virologia , Recém-Nascido , Prevalência , Adulto Jovem , Colo do Útero/virologia , Papillomavirus Humano 16/genéticaRESUMO
The derivation of chromium (Cr) ecological risk thresholds in soils remains limited, despite their importance as measurement standards and indicators for enacting soil protection policies. In this study, toxicity of Cr in soil to different species was tested based on Log-Logistic dose-effect relationship. On this basis, combined with Cr toxicity measurement data in literature, the ecological risk threshold HC5 for protecting 95% species safety in soils with different properties was obtained by fitting species sensitivity distribution curve (SSD). This research collected various Cr toxicological data from Chinese cropland soils, based on 31 different endpoints covering soil fauna, functional indicators of microorganisms, terrestrial plants, etc., sourced from both our laboratory and existing literature. We applied the SSD method to estimate the hazardous concentration of Cr for HC5 and ultimately established a predictive model according to HC5 and different soil properties. As a result, the EC10 (an effective concentration of Cr resulting in 10% suppression of terminal biological activity) based on 7 different soils and 4 endpoints ranged from 16.8 to 148.0 mg kg-1, and the hormesis of Cr induction reached up to 109%. Overall, the toxicity (EC10) to microorganisms was much lower, while it was higher for graminoids. All the toxicity data were corrected through an aging factor with up to 540 days of equilibration before fitting the SSD curves. After that, a prediction model considering HC5 values and soil properties was established as LogHC5 = 3.003LogpH +0.651LogOC +0.013LogCEC - 0.476. The model was well-verified in field experiments, as the actual and predicted values fell within a 2-fold error range. This approach offers a rigorous scientific foundation for determining the Cr ecological risk threshold and could be important for the conservation of ecological species in soils.
RESUMO
Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.
Assuntos
Monitoramento Ambiental , Organofosfatos , Rios , Poluentes Químicos da Água , Medição de Risco , Poluentes Químicos da Água/análise , Organofosfatos/análise , Rios/química , Ésteres/análise , China , Espectrometria de Massas em Tandem , Retardadores de Chama/análise , CidadesRESUMO
A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 µg/L for Y to 1.9 µg/L for La and Pr, and EC50s ranging from 4.3 µg/L for Y to 14.4 µg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 121 µg/L for Y to 469 µg/L for Pr, and EC50s ranging from 889 µg/L for Y to 3000 µg/L for Pr. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (µmol/L EC50) among REEs (Y â¼ Gd > Lu â¼ Nd â¼ Dy â¼ Ce > La â¼ Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 µg/L for Y to 3.0 µg/L for La, Pr or Lu).
Assuntos
Organismos Aquáticos , Metais Terras Raras , Poluentes Químicos da Água , Animais , Metais Terras Raras/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Qualidade da Água/normasRESUMO
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Assuntos
Neoplasias da Mama , Obesidade , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Feminino , Obesidade/complicações , Fatores de Risco , Índice de Massa Corporal , PrognósticoRESUMO
The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.
Assuntos
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
IL-15 is a homeostatic cytokine for human T and NK cells. However, whether other cytokines influence the effect of IL-15 is not known. We studied the impact that IL-10, TGF-ß, IL-17A, and IFN-γ have on the IL-15-induced proliferation of human T cells and the expression of HLA class I (HLA-I) molecules. Peripheral blood lymphocytes (PBLs) were labeled with CFSE and stimulated for 12 days with IL-15 in the absence or presence of the other cytokines. The proportion of proliferating T cells and the expression of cell surface HLA-I molecules were analyzed using flow cytometry. The IL-15-induced proliferation of T cells was paralleled by an increase in the expression of HC-10-reactive HLA-I molecules, namely on T cells that underwent ≥5-6 cycles of cell division. It is noteworthy that the IL-15-induced proliferation of T cells was potentiated by IL-10 and TGF-ß but not by IL-17 or IFN-γ and was associated with a decrease in the expression of HC-10-reactive molecules. The cytokines IL-10 and TGF-ß potentiate the proliferative capacity that IL-15 has on human T cells in vitro, an effect that is associated with a reduction in the amount of HC-10 reactive HLA class I molecules induced by IL-15.
Assuntos
Proliferação de Células , Antígenos de Histocompatibilidade Classe I , Interferon gama , Interleucina-10 , Interleucina-15 , Interleucina-17 , Linfócitos T , Fator de Crescimento Transformador beta , Humanos , Proliferação de Células/efeitos dos fármacos , Interferon gama/farmacologia , Interferon gama/metabolismo , Interleucina-17/farmacologia , Interleucina-17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-10/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/citologia , Células Cultivadas , Ativação Linfocitária/efeitos dos fármacosRESUMO
Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells are of paramount importance for intercellular communication. In physiological conditions, HCs can form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular ([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+ sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate, NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma, Charcot-Marie-Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and [Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane voltage will undoubtedly enhance our interpretation of the experimental results and pave the way for developing therapeutic compounds targeting specific HC dysfunctions.
Assuntos
Cálcio , Conexinas , Junções Comunicantes , Conexinas/metabolismo , Conexinas/genética , Humanos , Cálcio/metabolismo , Animais , Junções Comunicantes/metabolismo , Sinalização do CálcioRESUMO
Given the increasing concern over Cd contamination of agricultural soils in China, reducing the availability of the toxic metal has become an important remedial strategy. However, the lack of a unified evaluation framework complicates the assessment of remediation efficiency of different practices. Here, we evaluated the general extraction method (GEM) of available Cd in nine typical soil types by comparing extraction agents, including CaCl2, EDTA, Mehlich-â ¢, HCl and DTPA. The safe grain concentration of different agricultural products from National Food Safety Standards Limits of Contaminants in Food (GB 2762-2022) was then applied to understand soil limited available Cd concentration based on dose-response curves. We also derived environmental risk threshold (HC5) values for Cd remediation in agricultural soils by constructing species sensitivity distribution (SSD) curves. The results showed that Mehlich-â ¢ best predicted Cd accumulation in crops (with 76.5% of explanation of grain Cd) and was selected as the GEM of soil available Cd for subsequent analyses. The regression coefficient (R2) of dose-response curves fitting between Cd absorption in crop tissues and soil available Cd extracted by GEM based on 30 different crop species varied from 51.0% to 79.5%, and the derived limit concentration of soil available Cd based on standard GB 2762-2022 was 0.18-0.76 mgâ§kg-1. An HC5 of 0.19 mgâ§kg-1 was then calculated, meaning that a concentration of available Cd in agricultural soil below 0.19 mgâ§kg-1 ensures that 95% of agricultural products meet the quality and safety requirements of standard GB 2762-2022. The prediction model was well verified in the field test, indicating that can correctly estimate the soil available Cd based on the content of Cd in plant. This study provides a robust scientific framework for deriving the risk threshold for Cd remediation in agricultural soils and could be quite useful for establishing soil remediation standards.
Assuntos
Cádmio , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Agricultura , Cádmio/análise , China , Produtos Agrícolas , Recuperação e Remediação Ambiental/métodos , Solo/química , Poluentes do Solo/análiseRESUMO
OBJECTIVES: This study examined potential predictors of persistent depressive symptoms in a cohort of seriously ill older adults (aged 65+ years) receiving home care services. METHODS: This was a retrospective cohort study using secondary data collected from the Resident Assessment Instrument for Home Care for all assessments completed between 2001 and 2020. The cohort included seriously ill individuals with depressive symptoms at baseline and who continued to have depressive symptoms on reassessment within 12 months (n = 8,304). Serious illness was defined as having severe health instability, a prognosis of less than 6 months, or a goal of care related to palliative care (PC) on admission to the home care program. RESULTS: The mean age of the sample was 80.8 years (standard deviation [SD] = 7.7), 61.1% were female, and 82.1% spoke English as their primary language. The average length of time between assessments was 4.9 months (SD = 3.3). During that time, 64% of clients had persistent symptoms of depression. A multivariate logistic regression model found that language, pain, caregiver burden, and cognitive impairment were the most significant predictors of experiencing persistent depressive symptoms. SIGNIFICANCE OF RESULTS: Persistent depressive symptoms are highly prevalent in this population and, left untreated, could contribute to the person experiencing a "bad death." Some of the risk factors for this outcome are amenable to change, making it important to continually assess and flag these factors so interventions can be implemented to optimize the person's quality of life for as long as possible.
Assuntos
Depressão , Serviços de Assistência Domiciliar , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Depressão/diagnóstico , Depressão/etiologia , Depressão/psicologia , Estudos Retrospectivos , Qualidade de Vida , Dor/complicações , IdiomaRESUMO
Plastic pollution is worsening the living conditions on Earth, primarily due to the toxicity and stability of non-biodegradable plastics (NBPs). Photocatalytic cracking of NBPs is emerging as a promising way to cleave inert C-C bonds and abstract the carbon atoms from these wastes into valuable chemicals and fuels. However, controlling these processes is a huge challenge, ascribed to the complicated reactions of various NBPs. Herein, we summarize recent advances in the CO2 and carbon-radical-mediated photocatalytic cracking of NBPs, with an emphasis on the pivotal intermediates. The CO2-mediated cracking proceeded with indiscriminate C-H/C-C bond cleavage of NBPs and tandem photoreduction of CO2, while carbon-radical-mediated cracking was realized by the prior activation of C-H bonds for selective C-C bond cleavage of NBPs. Catalytic generation and conversion of different intermediates greatly depend on the kinds of active species and the structure of photocatalysts under irradiation. Meanwhile, the fate of a specific intermediate is compared with small molecule activation to reveal the key problems in the cracking of NBPs. Finally, the challenges and potential directions are discussed to improve the overall efficiency in the photocatalytic cracking of NBPs.
RESUMO
Tomato has undergone extensive selections during domestication. Recent progress has shown that genomic structural variants (SVs) have contributed to gene expression dynamics during tomato domestication, resulting in changes of important traits. Here, we performed comprehensive analyses of small RNAs (sRNAs) from nine representative tomato accessions. We demonstrate that SVs substantially contribute to the dynamic expression of the three major classes of plant sRNAs: microRNAs (miRNAs), phased secondary short interfering RNAs (phasiRNAs), and 24-nucleotide heterochromatic siRNAs (hc-siRNAs). Changes in the abundance of phasiRNAs and 24-nucleotide hc-siRNAs likely contribute to the alteration of mRNA gene expression in cis during tomato domestication, particularly for genes associated with biotic and abiotic stress tolerance. We also observe that miRNA expression dynamics are associated with imprecise processing, alternative miRNA-miRNA* selections, and SVs. SVs mainly affect the expression of less-conserved miRNAs that do not have established regulatory functions or low abundant members in highly expressed miRNA families. Our data highlight different selection pressures on miRNAs compared to phasiRNAs and 24-nucleotide hc-siRNAs. Our findings provide insights into plant sRNA evolution as well as SV-based gene regulation during crop domestication. Furthermore, our dataset provides a rich resource for mining the sRNA regulatory network in tomato.
Assuntos
MicroRNAs , Solanum lycopersicum , Domesticação , Regulação da Expressão Gênica de Plantas/genética , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Transcriptoma/genéticaRESUMO
East Asian passiflora virus (EAPV) seriously affects passionfruit production in Taiwan and Vietnam. In this study, an infectious clone of the EAPV Taiwan strain (EAPV-TW) was constructed, and EAPV-TWnss, with an nss tag attached to its helper component-protease (HC-Pro), was generated for monitoring the virus. Four conserved motifs of EAPV-TW HC-Pro were manipulated to create single mutations of F8I (simplified as I8), R181I (I181), F206L (L206), and E397N (N397) and double mutations of I8I181, I8L206, I8N397, I181L206, I181N397, and L206N397. Four mutants, EAPV I8I181, I8N397, I181L206, and I181N397, infected Nicotiana benthamiana and yellow passionfruit plants without conspicuous symptoms. Mutants EAPV I181N397 and I8N397 were stable after six passages in yellow passionfruit plants and expressed a zigzag pattern of accumulation dynamic, typical of beneficial protective viruses. An agroinfiltration assay indicated that the RNA silencing suppression capabilities of the four double mutated HC-Pros are significantly reduced. Mutant EAPV I181N397 accumulated the highest level of the small interfering RNA at 10 days postinoculation (dpi) in N. benthamiana plants, then dropped to background levels after 15 dpi. In both N. benthamiana and yellow passionfruit plants, EAPV I181N397 conferred complete cross protection (100%) against severe EAPV-TWnss, as defined by no severe symptoms and absence of the challenge virus, checked by Western blotting and reverse transcription PCR. Mutant EAPV I8N397 provided high degrees of complete protection against EAPV-TWnss in yellow passionfruit plants (90%) but not in N. benthamiana plants (0%). Both mutants showed complete protection (100%) against the Vietnam severe strain EAPV-GL1 in passionfruit plants. Thus, the mutants EAPV I181N397 and I8N397 have excellent potential for controlling EAPV in Taiwan and Vietnam. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Proteção Cruzada , Passiflora , Doenças das Plantas , Potyvirus , Passiflora/virologia , Potyvirus/genética , Interferência de RNA , Nicotiana , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologiaRESUMO
Biotechnologies that use plant viruses as plant enhancement tools have shown great potential to flexibly engineer crop traits, but field applications of these technologies are still limited by efficient dissemination methods. Potyviruses can be rapidly inoculated into plants by aphid vectors due to the presence of the potyviral helper component proteinase (HC-Pro), which binds to the DAG motif of the coat protein (CP) of the virion. Previously it was determined that a naturally occurring DAG motif in the non-aphid-transmissible potexvirus, potato aucuba mosaic virus (PAMV), is functional when a potyviral HC-Pro is provided to aphids in plants. The DAG motif of PAMV was successfully transferred to the CP of another non-aphid-transmissible potexvirus, potato virus X, to convey aphid transmission capabilities in the presence of HC-Pro. Here, we demonstrate that DAG-containing segments of the CP from two different potyviruses (sugarcane mosaic virus and turnip mosaic virus), and from the previously used potexvirus, PAMV, can make the potexvirus, foxtail mosaic virus (FoMV), aphid-transmissible when fused with the FoMV CP. We show that DAG-containing FoMVs are transmissible by aphids that have prior access to HC-Pro through potyvirus-infected plants or ectopic expression of HC-Pro. The transmission efficiency of the DAG-containing FoMVs varied from less than 10â% to over 70â% depending on the length and composition of the surrounding amino acid sequences of the DAG-containing segment, as well as due to the recipient plant species. Finally, we show that the engineered aphid-transmissible FoMV is still functional as a plant enhancement resource, as endogenous host target genes were silenced in FoMV-infected plants after aphid transmission. These results suggest that aphid transmission could be engineered into non-aphid-transmissible plant enhancement viral resources to facilitate their field applications.
Assuntos
Afídeos , Vírus de Plantas , Potexvirus , Potyvirus , Animais , Potexvirus/metabolismo , Potyvirus/genética , Cisteína Endopeptidases/química , Plantas , Doenças das PlantasRESUMO
As a key approach to mediate cholesterol metabolism, the role of the CYP27A1/27-HC axis in renal cell carcinoma (RCC) remains unclear. Analysis of CYP27A1 expression from public databases and metastatic cases in our center suggested that CYP27A1 was obviously downregulated in RCC tissues, and survival analysis further showed its correlation with favorable clinicopathological features and prognosis. In vitro, up and downregulation of CYP27A1 expression in RCC cell lines could definitely illustrate its anticipation involving apoptosis, proliferation, invasion, migration, and clonality. This could be achieved through upregulation of 27-HC concentration, which mediates the activation of signaling pathways of apoptosis and cell cycle arrest. Further, recovery of CYP27A1 expression could definitely inhibit the proliferation of RCC tumors in vivo. This is the first study to explore the role of the CYP27A1/27-HC axis in RCC. Attempts to maintain the normal function of the axis may be a potential strategy in the treatment of RCC, and the predictive value of CYP27A1 detection on the efficacy of targeted therapy in metastatic RCC is also worthy of attention.
Assuntos
Carcinoma de Células Renais , Colestanotriol 26-Mono-Oxigenase , Colesterol , Neoplasias Renais , Apoptose , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologiaRESUMO
BACKGROUND: To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS: Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS: Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS: In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.
Assuntos
Arabidopsis , Potyvirus , Interferência de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Potyvirus/genética , Nicotiana , Doenças das PlantasRESUMO
The mechanistic cause of the enhancement of the C3H6-SCR activity of Ag/Al2O3 by trace Pd doping and the corresponding structure-property relationship were investigated. Pd doping enhanced the water resistance of Ag/Al2O3 for C3H6-SCR by changing the reaction pathway. Under wet conditions, a series of in situ DRIFT studies indicated that the production of an active acetate intermediate on Ag/Al2O3 was suppressed during the partial oxidation of C3H6, while trace Pd doping promoted the formation of another active intermediate, an enolic species. Furthermore, a pathway for the formation of enolic species by the reaction of acrylate with hydroxyl species was proposed. DFT calculations revealed that the surface of Ag clusters was easily covered by hydroxyl in the presence of water vapor, which could inhibit the formation of acetates. Doping with Pd facilitated the activation of acrylate which might further react with hydroxyl species to form enolic species. These findings can be helpful for the future design of efficient HC-SCR catalysts.