Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Planta ; 259(3): 54, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294548

RESUMO

MAIN CONCLUSION: Using Raman micro-spectroscopy on tef roots, we could monitor cell wall maturation in lines with varied genetic lodging tendency. We describe the developing cell wall composition in root endodermis and cylinder tissue. Tef [Eragrostis tef (Zucc.) Trotter] is an important staple crop in Ethiopia and Eritrea, producing gluten-free and protein-rich grains. However, this crop is not adapted to modern farming practices due to high lodging susceptibility, which prevents the application of mechanical harvest. Lodging describes the displacement of roots (root lodging) or fracture of culms (stem lodging), forcing plants to bend or fall from their vertical position, causing significant yield losses. In this study, we aimed to understand the microstructural properties of crown roots, underlining tef tolerance/susceptibility to lodging. We analyzed plants at 5 and 10 weeks after emergence and compared trellised to lodged plants. Root cross sections from different tef genotypes were characterized by scanning electron microscopy, micro-computed tomography, and Raman micro-spectroscopy. Lodging susceptible genotypes exhibited early tissue maturation, including developed aerenchyma, intensive lignification, and lignin with high levels of crosslinks. A comparison between trellised and lodged plants suggested that lodging itself does not affect the histology of root tissue. Furthermore, cell wall composition along plant maturation was typical to each of the tested genotypes independently of trellising. Our results suggest that it is possible to select lines that exhibit slow maturation of crown roots. Such lines are predicted to show reduction in lodging and facilitate mechanical harvest.


Assuntos
Eragrostis , Microtomografia por Raio-X , Agricultura , Diferenciação Celular , Parede Celular
2.
Arch Biochem Biophys ; : 110159, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322099

RESUMO

In this study, thiazole derivatives containing sulphonamide, amide, and phenyl amino groups were synthesized to protect the free amino groups of 5-methyl-4-phenyl-2-aminothiazole and 4-phenyl-2-aminothiazole. Halogenated reactions of N-protected thiazole derivatives have been investigated. LCMS, FT-IR, 1H-NMR, and 13C-NMR spectroscopy techniques were used to elucidate the structures of the synthesized compounds. Inhibition effects of the N-protected thiazole derivatives against human carbonic anhydrase I, II (hCA I, hCA II), and acetylcholinesterase (AChE) were investigated. The best results among the synthesized N-protected thiazole derivatives showed Ki values in the range of 46.85-587.53 nM against hCA I, 35.01-578.06 nM against hCA II, and in the range of 19.58-226.18 nM against AChE. Furthermore, in silico studies with the target enzyme of the thiazole derivatives (9 and 11), which showed the best results experimentally, have examined the binding interactions of the related compounds at the enzyme active site.

3.
Brain ; 146(5): 1888-1902, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346130

RESUMO

Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.


Assuntos
Ácido Láctico , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Células Piramidais/fisiologia , Camundongos Knockout , Convulsões , Hipocampo
4.
Bioorg Chem ; 144: 107096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290186

RESUMO

In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.


Assuntos
Inibidores da Anidrase Carbônica , Neoplasias , Semicarbazidas , Humanos , Anidrase Carbônica IX , Relação Estrutura-Atividade , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica I , Isoformas de Proteínas/metabolismo , Indóis/farmacologia , Estrutura Molecular
5.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612414

RESUMO

Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1ß, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1ß, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1ß and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.


Assuntos
Dor Crônica , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Interleucina-18 , Proteínas Quinases Ativadas por AMP , Ácido Glutâmico , Interleucina-1beta , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Analgésicos
6.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279234

RESUMO

Stroke is the main cause for acquired disabilities. Pharmaceutical or mechanical removal of the thrombus is the cornerstone of stroke treatment but can only be administered to a subset of patients and within a narrow time window. Novel treatment options are therefore required. Here we induced stroke by permanent occlusion of the distal medial cerebral artery of wild-type mice and knockout mice for the lactate receptor hydroxycarboxylic acid receptor 1 (HCA1). At 24 h and 48 h after stroke induction, we injected L-lactate intraperitoneal. The resulting atrophy was measured in Nissl-stained brain sections, and capillary density and neurogenesis were measured after immunolabeling and confocal imaging. In wild-type mice, L-lactate treatment resulted in an HCA1-dependent reduction in the lesion volume accompanied by enhanced angiogenesis. In HCA1 knockout mice, on the other hand, there was no increase in angiogenesis and no reduction in lesion volume in response to L-lactate treatment. Nevertheless, the lesion volumes in HCA1 knockout mice-regardless of L-lactate treatment-were smaller than in control mice, indicating a multifactorial role of HCA1 in stroke. Our findings suggest that L-lactate administered 24 h and 48 h after stroke is protective in stroke. This represents a time window where no effective treatment options are currently available.


Assuntos
Ácido Láctico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Ácido Láctico/farmacologia , Encéfalo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Knockout
7.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125070

RESUMO

The COVID-19 pandemic highlighted the need to create and study new substances with improved lipophilicity and antimicrobial properties, such as ionic liquids (ILs), with easily tunable physicochemical properties. Most ILs possess strong antibacterial effects, but ILs containing the imidazolium cation are even more effective than the positive control. Thus, in this study, three ionic liquids with 1-butyl-3-methylimidazolium cation and various carboxylate anions (phenylacetate, benzoate, and 4-methoxyphenylacetate) were synthesized and fully characterized. The interactions between the cations and anions were discussed based on the experimental density, viscosity, and electrical conductivity. From the measured electrical conductivity and viscosity, the Walden plot is constructed and ionicity of the studied ILs is discussed. The similarities and dissimilarities among the studied ILs and their physicochemical properties are analyzed by applying the hierarchical cluster analysis and in silico calculated properties. The antimicrobial activity of the studied ionic liquids is tested on two bacterial (E. coli and P. aeruginosa) and three fungi (P. verrucosum, A. flavus, and A. parasiticus) strains, finding that they showed improved antimicrobial activity compared to the individual components.


Assuntos
Anti-Infecciosos , Ácidos Carboxílicos , Líquidos Iônicos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Viscosidade , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Condutividade Elétrica , Testes de Sensibilidade Microbiana , Simulação por Computador , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , COVID-19/virologia
8.
Molecules ; 29(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893543

RESUMO

Recent interest in the use of waxy starches in food production is due to the possibility of replacing chemically modified starches as texture-forming agents with native starch analogues. However, there is a lack of a coherent research comparing different varieties of commercially available waxy starches with respect to their molecular and functional properties. Therefore, the objective of this study was to compare native waxy starches from potatoes, corn, and rice, with particular attention to rheological characteristics in relation to molecular structure. The investigated potato, corn, and rice starch preparations were characterized by significantly different molecular properties due to both botanical origin of starch and variety. The molecular weights of waxy starches were significantly higher than those of their normal counterparts. This phenomenon was accompanied by a more loose conformation of the waxy starch macromolecule in solution. The presence of amylose confers the ability to coagulate starch sol into gel, resulting in substantial changes in the rheological properties of starch paste, and waxy starch pastes being characterized by more viscous flow and smoother texture. Hierarchical cluster analysis indicated that differences between functional properties are more notable for normal than for waxy preparations, in which potato starch, regardless of its variety, was characterized by the most unique characteristics.

9.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731461

RESUMO

This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Mentha spicata , Mentha , Óleos Voláteis , Óleos Voláteis/química , Mentha/química , Mentha spicata/química , Análise Multivariada , Região do Mediterrâneo , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/análise , Monoterpenos/química , Monoterpenos/análise , Limoneno/química , Terpenos/química , Terpenos/análise , Mentol
10.
Plant Foods Hum Nutr ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153163

RESUMO

Understanding the nutritional diversity in Perilla (Perilla frutescens L.) is essential for selecting and developing superior varieties with enhanced nutritional profiles in the North Eastern Himalayan (NEH) region of India. In this study, we assessed the nutritional composition of 45 diverse perilla germplasm collected from five NEH states using standard protocols and advanced analytical techniques. Significant variability was observed in moisture (0.39-11.67%), ash (2.59-7.13%), oil (28.65-74.20%), protein (11.05-23.15%), total soluble sugars (0.34-3.67%), starch (0.01-0.55%), phenols (0.03-0.87%), ferric reducing antioxidant power (0.45-1.36%), palmitic acid (7.06-10.75%), stearic acid (1.96-2.29%), oleic acid (8.11-13.31%), linoleic acid (15.18-22.74%), and linolenic acid (55.47-67.07%). Similarly, significant variability in mineral content (ppm) was also observed for aluminium, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, and zinc. Multivariate analyses, including hierarchical clustering analysis (HCA) and principal component analysis (PCA), revealed the enriched nutritional diversity within the germplasm. Correlation analysis indicated significant positive and negative relationships between nutritional parameters, indicating potential biochemical and metabolic interactions present in the perilla seeds. TOPSIS-based ranking identified promising genotypes for functional foods, pharmaceuticals, and nutritional applications. This study provides a first in-depth report of the nutritional composition and diversity of perilla germplasm in the NEH region, thus aiding in the identification of superior varieties for food and nutritional diversification and security.

11.
J Neuroinflammation ; 20(1): 86, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991440

RESUMO

BACKGROUND: Previous studies have shown a close association between an altered immune system and Parkinson's disease (PD). Neuroinflammation inhibition may be an effective measure to prevent PD. Recently, numerous reports have highlighted the potential of hydroxy-carboxylic acid receptor 2 (HCA2) in inflammation-related diseases. Notably, the role of HCA2 in neurodegenerative diseases is also becoming more widely known. However, its role and exact mechanism in PD remain to be investigated. Nicotinic acid (NA) is one of the crucial ligands of HCA2, activating it. Based on such findings, this study aimed to examine the effect of HCA2 on neuroinflammation and the role of NA-activated HCA2 in PD and its underlying mechanisms. METHODS: For in vivo studies, 10-week-old male C57BL/6 and HCA2-/- mice were injected with LPS in the substantia nigra (SN) to construct a PD model. The motor behavior of mice was detected using open field, pole-climbing and rotor experiment. The damage to the mice's dopaminergic neurons was detected using immunohistochemical staining and western blotting methods. In vitro, inflammatory mediators (IL-6, TNF-α, iNOS and COX-2) and anti-inflammatory factors (Arg-1, Ym-1, CD206 and IL-10) were detected using RT-PCR, ELISA and immunofluorescence. Inflammatory pathways (AKT, PPARγ and NF-κB) were delineated by RT-PCR and western blotting. Neuronal damage was detected using CCK8, LDH, and flow cytometry assays. RESULTS: HCA2-/- increases mice susceptibility to dopaminergic neuronal injury, motor deficits, and inflammatory responses. Mechanistically, HCA2 activation in microglia promotes anti-inflammatory microglia and inhibits pro-inflammatory microglia by activating AKT/PPARγ and inhibiting NF-κB signaling pathways. Further, HCA2 activation in microglia attenuates microglial activation-mediated neuronal injury. Moreover, nicotinic acid (NA), a specific agonist of HCA2, alleviated dopaminergic neuronal injury and motor deficits in PD mice by activating HCA2 in microglia in vivo. CONCLUSIONS: Niacin receptor HCA2 modulates microglial phenotype to inhibit neurodegeneration in LPS-induced in vivo and in vitro models.


Assuntos
Niacina , Doença de Parkinson , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Neurônios Dopaminérgicos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Niacina/farmacologia , Doença de Parkinson/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
12.
J Comput Aided Mol Des ; 37(12): 735-754, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804393

RESUMO

QSAR models capable of predicting biological, toxicity, and pharmacokinetic properties were widely used to search lead bioactive molecules in chemical databases. The dataset's preparation to build these models has a strong influence on the quality of the generated models, and sampling requires that the original dataset be divided into training (for model training) and test (for statistical evaluation) sets. This sampling can be done randomly or rationally, but the rational division is superior. In this paper, we present MASSA, a Python tool that can be used to automatically sample datasets by exploring the biological, physicochemical, and structural spaces of molecules using PCA, HCA, and K-modes. The proposed algorithm is very useful when the variables used for QSAR are not available or to construct multiple QSAR models with the same training and test sets, producing models with lower variability and better values for validation metrics. These results were obtained even when the descriptors used in the QSAR/QSPR were different from those used in the separation of training and test sets, indicating that this tool can be used to build models for more than one QSAR/QSPR technique. Finally, this tool also generates useful graphical representations that can provide insights into the data.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Bases de Dados de Compostos Químicos , Benchmarking
13.
J Enzyme Inhib Med Chem ; 38(1): 2202360, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37092262

RESUMO

Considering the unrecognised physio-pathological role of human carbonic anhydrase III (hCA III), a structure-based drug design was set up to identify the first-in-class potent and selective inhibitors of this neglected isoform. hCA III targeting was planned considering a unique feature of its active site among the other hCA isoforms, i.e. the Leu198/Phe198 substitution which interferes with the binding of aromatic/heterocyclic sulfonamides and other inhibitors. Thus, new aliphatic primary sulfonamides possessing long and flexible (CH2)nSO2NH2 moieties were designed to coordinate the zinc(II) ion, bypassing the bulky Phe198 residue. They incorporate 1,2,3-triazole linkers which connect the tail moieties to the sulfonamide head, enhancing thus the contacts at the active site entrance. Some of these compounds act as nanomolar and selective inhibitors of hCA III over other isoforms. Docking/molecular dynamics simulations were used to investigate ligand/target interactions for these sulfonamides which might improve our understanding of the physio-pathological roles of hCA III.


Assuntos
Inibidores da Anidrase Carbônica , Desenho de Fármacos , Sulfonamidas , Inibidores da Anidrase Carbônica/química , Humanos , Sulfonamidas/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Estrutura Molecular
14.
Chem Biodivers ; 20(11): e202301098, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782764

RESUMO

In this study, the composition of the volatile oils obtained from the fruits of 8 Ferulago species (Ferulago cassia Boiss., F. isaurica Pesmen, F. humilis Boiss., F. macrosciadia Boiss. & Balansa, F. setifolia K.Koch, F. silaifolia (Boiss.) Boiss., F. syriaca Boiss., F. trojana Akalin & Pimenov) growing naturally in Türkiye were examined by means of GC/MS and GC-FID and α-pinene was determined to be present in the fruits of four species along with other monoterpenes as major components. Principal Component Analyses (PCA) and Hierarchical Cluster Analysis (HCA) was performed, utilizing ten major components in the eight essential oils. Also, a Venn diagram was used to demonstrate chemotaxonomical variations in the composition of the essential oils of eight Ferulago species.


Assuntos
Apiaceae , Óleos Voláteis , Frutas/química , Monoterpenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Gasosa
15.
Chem Biodivers ; 20(5): e202300364, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37070659

RESUMO

Ferulago glareosa Kandemir & Hedge. is an endemic species of the family Apiaceae for Turkey and has interesting morphological characteristics compared to the other members of the genus Ferulago Koch. In this study we investigated the essential oil compositions of the roots and aerial parts of F. glareosa for the first time and compared them with essential oil compositions of the roots and aerial parts of other species of the genus. In our study, major components of the essential oil of the roots were determined to be 2,3,6-trimethylbenzaldehyde (32.2 %), falcarinol (23.7 %), hexadecanoic acid (9.5 %) and 2,5-dimethoxy-p-cymene (5.9 %); and major components of the essential oil of the aerial parts were found to be α-pinene (33.7 %), p-cymene (14.8 %), γ-terpinene (13.2 %), (Z)-ß-ocimene (12.4 %) and terpinolene (8.2 %). The essential oil compositions of F. glareosa root compare with essential oils components in the literature differ varies greatly. Hierarchical Cluster Analysis (HCA) was performed with Minitab software, utilizing 8 major components in the published 20 literatures, as well as in this study. Principal Component Analyses (PCA) were used in order to demonstrate chemotaxonomical variations in the composition of the essential oils of Ferulago species.


Assuntos
Apiaceae , Óleos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Componentes Aéreos da Planta , Análise de Componente Principal
16.
Arch Pharm (Weinheim) ; 356(11): e2300309, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37691073

RESUMO

Herein, we report the design and synthesis of two series of pyrazole-tethered sulfamoyl phenyl acetamides and pyrazole-tethered sulfamoyl phenyl benzamides. The synthesized compounds were investigated for inhibiting two human carbonic anhydrases, human carbonic anhydrases (hCA) I and II, and those of the bacterial pathogen Mycobacterium tuberculosis, mtCA 1-3. The results indicate that, among the synthesized compounds, pyrazoles with 4-aminobenzene sulfonamide were more selective toward hCA I and II over mtCAs, and compounds with 3-aminobenzene sulfonamide were selective toward mtCA 1-3 over hCA I, II. Compound 6g showed significant and selective inhibition toward hCA I and II, with Ki values of 0.0366 and 0.0310 µM, respectively. Compound 5g exhibited the best inhibition toward mtCA 2, with a Ki value of 0.0617 µM. Among the benzamides, compound 9b exhibited significant activity toward mtCA 2, with a Ki value of 0.0696 µM. Selectivity of these compounds was further supported by docking studies. When tested for antitubercular activity, many compounds showed moderate to good inhibition against the Mtb H37Rv strain, with minimum inhibitory concentration (MIC) values in the range of 4-128 µg/mL.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Relação Estrutura-Atividade , Anidrase Carbônica II , Anidrases Carbônicas/metabolismo , Pirazóis/farmacologia , Anidrase Carbônica I , Sulfonamidas/farmacologia , Benzamidas , Estrutura Molecular
17.
Arch Pharm (Weinheim) ; 356(1): e2200383, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36250310

RESUMO

In recent years, multistep hybrid computational protocols have attracted attention for their application in the drug discovery of enzyme inhibitors. So far, there are large collections of human carbonic anhydrase (hCA) inhibitors, but only a few of them selectively inhibit the mitochondrial isoforms hCA VA and VB as potential therapeutics in obesity treatment. Most sulfonamide-based inhibitors show poor selectivity for inhibiting isoforms of therapeutic interest over ubiquitous hCA I and hCA II. Herein, we propose a combination of ligand- and structure-based approaches to generate pharmacophore models for hCA VA inhibitors. Then, we performed a virtual screening (VS) campaign on a database of commercially available sulfonamides. Finally, the in silico screening followed by docking studies suggested several "hit compounds" that demonstrated to inhibit hCA VA at a low nanomolar concentration in a stopped-flow CO2 hydrase assay. Notably, the best candidate, 2-(3,4-dihydro-2H-quinolin-1-yl)-N-(4-sulfamoylphenyl)acetamide (code name VAME-28) proved to be a potent hCA VA inhibitor (Ki value of 54.8 nM) and a more selective agent over hCA II when compared to the reference compound topiramate.


Assuntos
Anidrases Carbônicas , Humanos , Estrutura Molecular , Anidrases Carbônicas/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Isoformas de Proteínas , Inibidores da Anidrase Carbônica/farmacologia
18.
Phytochem Anal ; 34(2): 163-174, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36433771

RESUMO

INTRODUCTION: Viticis Fructus is the dried ripe fruit of Vitex trifolia L. (VTF) or V. trifolia subsp. litoralis Steenis (VTLF). Different botanical sources of the same herbal medicines may have different clinical efficacies, but few studies have reported the comparative identification of VTF and VTLF. OBJECTIVES: To establish a high-performance liquid chromatography (HPLC) method for the simultaneous assay of 11 constituents in Viticis Fructus, to compare the chemical compositions of VTF and VTLF, and to identify chemical markers for the discrimination and quality evaluation of the two botanical origins of Viticis Fructus. METHODOLOGY: An HPLC-diode array detection (DAD)-high-resolution mass spectrometry (HRMS) method was developed for the simultaneous separation and quantification of 11 constituents in 21 batches of Viticis Fructus samples from different sources in China. Moreover, chemometrics were performed to compare and discriminate VTF and VTLF samples. RESULTS: The results from 11 batches of VTF and 10 batches of VTLF were compared for 11 components, of which 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid were identified and quantified in Viticis Fructus for the first time. The quantitative analysis showed significantly higher chlorogenic acid and casticin contents in VTLF than in VTF, and the chemometric analysis indicated that chlorogenic acid and casticin were responsible for the significant differences between VTF and VTLF; these two compounds might be used as chemical markers to distinguish the two original plant sources of Viticis Fructus. CONCLUSIONS: The present work provides useful information for understanding the chemical differences between VTF and VTLF. This work also provides feasible methods for the quality evaluation and discrimination of herbal medicines originating from multiple botanical sources.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Frutas/química , Cromatografia Líquida de Alta Pressão/métodos , Quimiometria , Ácido Clorogênico/análise , Espectrometria de Massas , Extratos Vegetais/análise , Medicamentos de Ervas Chinesas/química
19.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37766015

RESUMO

In this work, the degradation of the random telegraph noise (RTN) and the threshold voltage (Vt) shift of an 8.3Mpixel stacked CMOS image sensor (CIS) under hot carrier injection (HCI) stress are investigated. We report for the first time the significant statistical differences between these two device aging phenomena. The Vt shift is relatively uniform among all the devices and gradually evolves over time. By contrast, the RTN degradation is evidently abrupt and random in nature and only happens to a small percentage of devices. The generation of new RTN traps by HCI during times of stress is demonstrated both statistically and on the individual device level. An improved method is developed to identify RTN devices with degenerate amplitude histograms.

20.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003224

RESUMO

Hepatocellular adenomas are benign endothelial tumors of the liver, mostly associated with female individual users of estrogen-containing medications. However, the precise factors underlying the selective development of hepatic adenomas in certain females remain elusive. Additionally, the conventional profile of individuals prone to hepatic adenoma is changing. Notably, male patients exhibit a higher risk of malignant progression of hepatocellular adenomas, and there are instances where hepatic adenomas have no identifiable cause. In this paper, we theorize the role of the human gastrointestinal microbiota, specifically, of bacterial species producing ß-glucuronidase enzymes, in the development of hepatic adenomas through the estrogen recycling pathway. Furthermore, we aim to address some of the existing gaps in our knowledge of pathophysiological pathways which are not yet subject to research or need to be studied further. As microbial ß-glucuronidases proteins recycle estrogen and facilitate the conversion of inactive estrogen into its active form, this process results in elevated levels of unbound plasmatic estrogen, leading to extended exposure to estrogen. We suggest that an imbalance in the estrobolome could contribute to sex hormone disease evolution and, consequently, to the advancement of hepatocellular adenomas, which are estrogen related.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Adenoma de Células Hepáticas/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Glucuronidase/metabolismo , Estrogênios/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa