Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563568

RESUMO

In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Meristema/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Plant Cell Physiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985662

RESUMO

To analyze the gene involved in orchid floral development, a HD-Zip II gene PaHAT14, which specifically and highly expressed in perianth during early flower development was identified from Phalaenopsis. Transgenic Arabidopsis plants expressing 35S::PaHAT14 and 35S::PaHAT14+SRDX (fused with the repressor motif SRDX) exhibited similar altered phenotypes, including small leaves, early flowering, and bending petals with increased cuticle production. This suggests that PaHAT14 acts as a repressor. In contrast, transgenic Arabidopsis plants expressing 35S::PaHAT14+VP16 (fused with the activation domain VP16) exhibited curled leaves, late flowering, and folded petals with decreased cuticle production within hardly opened flowers. Additionally, the expression of the ERF gene DEWAX2, which negatively regulates cuticular wax biosynthesis, was down-regulated in 35S::PaHAT14 and 35S::PaHAT14+SRDX transgenic Arabidopsis, while it was up-regulated in 35S::PaHAT14+VP16 transgenic Arabidopsis. Furthermore, transient overexpression of PaHAT14 in Phalaenopsis petal/sepal increased cuticle deposition due to the down-regulation of PaERF105, a Phalaenopsis DEWAX2 orthologue. On the other hand, transient overexpression of PaERF105 decreased cuticle deposition, whereas cuticle deposition increased and the rate of epidermal water loss was reduced in PaERF105 VIGS Phalaenopsis flowers. Moreover, ectopic expression of PaERF105 not only produced phenotypes similar to those in 35S::PaHAT14+VP16 Arabidopsis but also compensated for the altered phenotypes observed in 35S::PaHAT14 and 35S::PaHAT14+SRDX Arabidopsis. These results suggest that PaHAT14 promotes cuticle deposition by negatively regulating downstream gene PaERF105 in orchid flowers.

3.
Mol Biol Rep ; 51(1): 581, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668759

RESUMO

BACKGROUND: Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS: Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS: In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS: The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Nicotiana , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Giberelinas/metabolismo , Zíper de Leucina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica/métodos
4.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628120

RESUMO

In the signal transduction network, from the perception of stress signals to stress-responsive gene expression, various transcription factors and cis-regulatory elements in stress-responsive promoters coordinate plant adaptation to abiotic stresses. Among the AP2/ERF transcription factor family, group VII ERF (ERF-VII) genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/HRE2, are known to be involved in the response to hypoxia in Arabidopsis. Notably, HRE2 has been reported to be involved in responses to hypoxia and osmotic stress. In this study, we dissected HRE2 promoter to identify hypoxia- and salt stress-responsive region(s). The analysis of the promoter deletion series of HRE2 using firefly luciferase and GUS as reporter genes indicated that the -116 to -2 region is responsible for both hypoxia and salt stress responses. Using yeast one-hybrid screening, we isolated HAT22/ABIG1, a member of the HD-Zip II subfamily, which binds to the -116 to -2 region of HRE2 promoter. Interestingly, HAT22/ABIG1 repressed the transcription of HRE2 via the EAR motif located in the N-terminal region of HAT22/ABIG1. HAT22/ABIG1 bound to the 5'-AATGATA-3' sequence, HD-Zip II-binding-like cis-regulatory element, in the -116 to -2 region of HRE2 promoter. Our findings demonstrate that the -116 to -2 region of HRE2 promoter contains both positive and negative cis-regulatory elements, which may regulate the expression of HRE2 in responses to hypoxia and salt stress and that HAT22/ABIG1 negatively regulates HRE2 transcription by binding to the HD-Zip II-binding-like element in the promoter region.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Hipóxia/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
New Phytol ; 231(3): 1265-1277, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33469925

RESUMO

The patterning of adaxial-abaxial tissues plays a vital role in the morphology of lateral organs, which is maintained by antagonism between the genes that specify adaxial and abaxial tissue identity. The homeo-domain leucine zipper class III (HD-ZIP III) family genes regulate adaxial identity; however, little information is known about the physical interactions or transcriptionally regulated downstream genes of HD-ZIP III. In this study, we identified a dominant rice mutant, lateral floret 1 (lf1), which has defects in lateral organ polarity. LF1 encodes the HD-ZIP III transcription factor, which expressed in the adaxial area of lateral organs. LF1 can activate directly the expression of LITTLE ZIPPER family gene OsZPR4 and HD-ZIP II family gene OsHOX1, and OsZPR4 and OsHOX1 respectively interact with LF1 to form a heterodimer to repress the transcriptional activity of LF1. LF1 influences indole-3-acetic acid (IAA) content by directly regulating the expression of OsYUCCA6. Therefore, LF1 forms negative feedback loops between OsZPR4 and OsHOX1 to affect IAA content, leading to the regulation of lateral organs polarity development. These results reveal the cross-talk among HD-ZIP III, LITTLE ZIPPER, and HD-ZIP II proteins and provide new insights into the molecular mechanisms underlying the polarity development of lateral organs.


Assuntos
Proteínas de Homeodomínio/fisiologia , Oryza , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Zíper de Leucina , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição/genética
6.
J Exp Bot ; 66(16): 5043-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911742

RESUMO

The homeodomain-leucine zipper (HD-Zip) class of transcription factors is unique to plants. HD-Zip proteins bind to DNA exclusively as dimers recognizing dyad symmetric sequences and act as positive or negative regulators of gene expression. On the basis of sequence homology in the HD-Zip DNA-binding domain, HD-Zip proteins have been grouped into four families (HD-Zip I-IV). Each HD-Zip family can be further divided into subfamilies containing paralogous genes that have arisen through genome duplication. Remarkably, all the members of the HD-Zip IIγ and -δ clades are regulated by light quality changes that induce in the majority of the angiosperms the shade-avoidance response, a process regulated at multiple levels by auxin. Intriguingly, it has recently emerged that, apart from their function in shade avoidance, the HD-Zip IIγ and -δ transcription factors control several auxin-regulated developmental processes, including apical embryo patterning, lateral organ polarity, and gynoecium development, in a white-light environment. This review presents recent advances in our understanding of HD-Zip II protein function in plant development, with particular emphasis on the impact of loss-of-function HD-Zip II mutations on auxin distribution and response. The review also describes evidence demonstrating that HD-Zip IIγ and -δ genes are directly and positively regulated by HD-Zip III transcription factors, primary determinants of apical shoot development, known to control the expression of several auxin biosynthesis, transport, and response genes. Finally, the interplay between HD-Zip II and III transcription factors in embryo apical patterning and organ polarity is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Ácidos Indolacéticos/metabolismo , Zíper de Leucina , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa