Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Hepatol ; 80(2): 220-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925078

RESUMO

BACKGROUND & AIMS: Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS: Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS: We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS: Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS: Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.


Assuntos
Hepatite D Crônica , Vírus Delta da Hepatite , Humanos , Vírus Delta da Hepatite/fisiologia , Janus Quinase 1 , Vírus da Hepatite B , Hepatite D Crônica/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
2.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555623

RESUMO

Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.


Assuntos
Hepatite B , Hepatite D , Humanos , Vírus Delta da Hepatite/genética , Replicação Viral , Vírus da Hepatite B/genética , Hepatite D/epidemiologia , Antígenos de Superfície da Hepatite B/genética
3.
Biochem Cell Biol ; 97(2): 130-139, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30153423

RESUMO

Liver coinfection by hepatitis B virus (HBV) and hepatitis D virus (HDV) can result in a severe form of hepatocellular carcinoma with poor prognosis. Coinfection with HDV and HBV causes more deleterious effects than infection with HBV alone. Clinical research has shown that glutathione S-transferase P1 (GSTP1), a tumor suppressor gene, is typically downregulated in liver samples from hepatitis-infected patients. In the present study, our data indicated that small HDV antigen (s-HDAg) could specifically bind to GSTP1 mRNA and significantly downregulate GSTP1 protein expression. For the human fetal hepatocyte cell line L-02, cells transfected with s-HDAg, along with decreased GSTP1 expression, there was a significant accumulation of reactive oxygen species (ROS) and increased apoptotic ratios. Restoring GSTP1 expression through silencing s-HDAg via RNAi or overexpressing exogenous GSTP1 could largely recover the abnormal cell status. Our results revealed a novel potential mechanism of HDV-induced liver injury and hepatocarcinogenesis: s-HDAg can inhibit GSTP1 expression by directly binding to GSTP1 mRNA, which leads to accumulation of cellular ROS, resulting in high cellular apoptotic ratios and increased selective pressure for malignant transformation. To our knowledge, this is the first study to examine s-HDAg-specific pathogenic mechanisms through potential protein-RNA interactions.


Assuntos
Transformação Celular Viral , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Glutationa S-Transferase pi/biossíntese , Vírus Delta da Hepatite/metabolismo , Antígenos da Hepatite delta/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular , Glutationa S-Transferase pi/genética , Vírus Delta da Hepatite/genética , Antígenos da Hepatite delta/genética , Humanos , Fígado/lesões , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , RNA Mensageiro/genética
4.
J Viral Hepat ; 26(7): 900-910, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30801877

RESUMO

Hepatitis delta virus (HDV) is an RNA virus which leads to both acute and chronic forms of hepatitis. At present, HDV isolates have been classified into eight major genotypes distributed over different geographical regions. Recent increase in HDV sequences in Europe and worldwide has enabled us to revisit the taxonomic classification of HDV. A total of 116 large hepatitis delta antigen (L-HDAg) nucleotide sequences and 13 full-length HDV genome sequences belonging to genotype-1 from our European cohort, as well as 621 L-HDAg nucleotide sequences belonging to genotype-1 to genotype-8 retrieved from the GenBank NCBI were included in this study. All 116 isolates of our cohort and 341 of 621 isolates (60%) account for genotype-1, while the remaining 40% of isolates were unevenly distributed across genotype-2 to genotype-8. Phylogenetic analysis of 98 L-HDAg sequences selected after elimination of redundant sequences of all 737 isolates was performed to identify plausible subtypes within HDV genotype-1. Pairwise genetic distances for L-HDAg sequences were calculated to estimate the inter-genotype and inter-subtype differences. The HDV genotype-1 isolates phylogenetically formed five distinct clusters (genotype 1a-1e), each of them corresponding to a distinct geographic region. Two distinct subtypes for HDV genotype-2 and -4 (ie -2a and -2b; -4a and -4b, respectively) could be identified based on isolate sequences from GenBank. The previously defined genotype-1 to genotype-8 have an inter-genotypic difference of ≥10%, while the newly defined subtypes of genotype-1, -2 and -4 show an inter-subtype difference of ≥3% to <10% from the average diversity. In addition, we identified unique amino acid residues, known as specificity-determining positions, amongst the proposed subtypes.


Assuntos
Variação Genética , Genoma Viral , Genótipo , Hepatite D/epidemiologia , Hepatite D/virologia , Vírus Delta da Hepatite/classificação , Vírus Delta da Hepatite/genética , Europa (Continente)/epidemiologia , Humanos , Filogenia , Filogeografia , Recombinação Genética
5.
J Hepatol ; 60(3): 538-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24280293

RESUMO

BACKGROUND & AIMS: Clinical studies have shown that hepatitis delta virus (HDV) infection can persist for years and intrahepatic latency of the large delta antigen (HDAg) has been detected following liver transplantation. However, large HDAg arising via RNA-editing is associated with increasing amounts of non-infectious HDV quasi-species. This study investigated whether HDV could persist intrahepatically in the absence of HBV in vivo and whether infectious HDV could subsequently be released following HBV super-infection. METHODS: Humanized mice were infected with HDV particles lacking HBV. To test for rescue of latent HDV infection 3 and 6 weeks HDV mono-infected mice were super-infected with HBV. Viral loads and cell toxicity were determined by qRT-PCR and immunohistochemistry. RESULTS: The presence of HDAg-positive human hepatocytes determined after 2, 3, and 6 weeks of HDV inoculation demonstrated establishment and maintenance of intrahepatic HDV mono-infection. Although intrahepatic amounts of large HDAg and edited HDV RNA forms increased over time in HDV mono-infected livers, HBV super-infection led to prompt viremia development (up to 10(8) HDV RNA and 10(7) HBV-DNA copies/ml) even after 6 weeks of latent mono-infection. Concurrently, the number of HDAg-positive human hepatocytes increased, demonstrating intrahepatic HDV spreading. The infectivity of the rescued HDV virions was verified by serial passage in naive chimeric mice. CONCLUSIONS: HDV mono-infection can persist intrahepatically for at least 6 weeks before being rescued by HBV. Conversion of a latent HDV infection to a productive HBV/HDV co-infection may contribute to HDV persistence even in patients with low HBV replication and in the setting of liver transplantation.


Assuntos
Coinfecção/virologia , Hepatite B/virologia , Hepatite D/virologia , Animais , Sequência de Bases , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Replicação Viral
6.
JHEP Rep ; 6(1): 100961, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192534

RESUMO

Background & Aims: Hepatitis D virus (HDV) is the causative agent of chronic hepatitis delta, the most severe form of viral hepatitis. HDV encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus, which confer regulatory roles that are distinct from those of S-HDAg. Notably, these residues are divergent between different genotypes. We aimed to elucidate the molecular determinants within the C-termini that are essential for the regulatory role of L-HDAg in HDV replication and assembly. Methods: Northern blot, reverse-transcription quantitative PCR, and a newly established HDV trans-complementary system were used in this study. Results: C-termini of L-HDAg, albeit with high sequence variation among different genotypes, are interchangeable with respect to the trans-inhibitory function of L-HDAg and HDV assembly. The C-terminus of L-HDAg features a conserved prenylation CXXQ motif and is enriched with proline and hydrophobic residues. Abolishment of the CXXQ motif attenuated the inhibitory effect of L-HDAg on HDV replication. In contrast, the enrichment of proline and hydrophobic residues per se does not modify the trans-inhibitory function of L-HDAg. Nevertheless, these residues are essential for HDV assembly. Mechanistically, prolines and hydrophobic residues contribute to HDV assembly via a mode of action independent of the prenylated CXXQ motif. Conclusions: Within the C-terminus of L-HDAg, the CXXQ motif and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly. This intrinsic viral regulatory mechanism we elucidated deepens our understanding of the unique life cycle of HDV. Impact and implications: Hepatitis D virus (HDV) encodes one protein, hepatitis delta antigen (HDAg), in two isoforms: S- and L-HDAg. They are identical in sequence except that L-HDAg contains an additional 19-20 amino acids at its C-terminus. This C-terminal extension in L-HDAg confers regulatory roles in the HDV life cycle that are distinct from those of S-HDAg. Herein, we found that C-termini of L-HDAg, although with high sequence variation, are interchangeable among different HDV genotypes. Within the C-terminus of L-HDAg, the prenylation motif, and the enrichment of proline and hydrophobic residues are all essential determinants of L-HDAg's regulatory roles in HDV replication and assembly.

7.
Viruses ; 16(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543745

RESUMO

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.


Assuntos
Vírus Delta da Hepatite , RNA Viral , Animais , Camundongos , Antígenos da Hepatite delta/genética , Antígenos da Hepatite delta/metabolismo , RNA Viral/metabolismo , Camundongos Endogâmicos C57BL , Replicação Viral/genética , Processamento de Proteína Pós-Traducional , Fígado/metabolismo
8.
JHEP Rep ; 5(4): 100673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36908749

RESUMO

Background & Aims: Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods: PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results: PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions: Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications: Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.

9.
Biomol NMR Assign ; 16(2): 311-316, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749039

RESUMO

Hepatitis D virus (HDV) is a defective virus that relies on hepatitis B virus envelope proteins to complete its replication cycle. The HDV genome contains two isoforms of hepatitis delta antigen: the small and the large hepatitis delta antigens (S- and L-HDAg). Here we report the 1H, 13C and 15 N backbone and side chain resonance assignments of an N-terminally truncated form of S-HDAg (SΔ60), which lacks the 1-60 oligomerization domain. We derived secondary structures based on NMR chemical shifts, which will be used in further structural and functional studies. We show that SΔ60 is partially disordered, and that the central structured part contains two well-defined α-helices of 22 and 17 residues, respectively. A temperature titration allowed to identify the residues involved in hydrogen bonds.


Assuntos
Proteínas do Envelope Viral , Replicação Viral , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/metabolismo , Antígenos da Hepatite delta/metabolismo , Ressonância Magnética Nuclear Biomolecular
10.
JHEP Rep ; 4(3): 100415, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141510

RESUMO

BACKGROUND & AIMS: HDV superinfection of chronically HBV-infected patients is the most aggressive form of chronic viral hepatitis, with an accelerated progression towards fibrosis/cirrhosis and increased risk of liver failure, hepatocellular carcinoma, and death. While HDV infection is not susceptible to available direct anti-HBV drugs, suboptimal responses are obtained with interferon-α-based therapies, and the number of investigational drugs remains limited. We therefore analyzed the effect of several innate immune stimulators on HDV replication in infected hepatocytes. METHODS: We used in vitro models of HDV and HBV infection based on primary human hepatocytes (PHHs) and the non-transformed HepaRG cell line that are relevant to explore new innate immune therapies. RESULTS: We describe here, for the first time, anti-HDV effects of Pam3CSK4 and BS1, agonists of Toll-like receptor (TLR)-1/2, and the lymphotoxin-ß receptor (LTßR), respectively. Both types of agonists induced dose-dependent reductions of total intracellular HDV genome and antigenome RNA and of HDV protein levels, without toxicity in cells monoinfected with HDV or co/superinfected with HBV. Moreover, both molecules negatively affected HDV progeny release and strongly decreased their specific infectivity. The latter effect is particularly important since HDV is thought to persist in humans through constant propagation. CONCLUSIONS: Immune-modulators inducing NF-κB pathways in hepatocytes can inhibit HDV replication and should be further evaluated as a possible therapeutic approach in chronically HBV/HDV-infected patients. LAY SUMMARY: Hepatitis delta virus causes the most severe form of viral hepatitis. Despite positive recent developments, effective treatments remain a major clinical need. Herein, we show that immune-modulators that trigger the NF-κB pathways could be effective for the treatment of hepatitis delta infections.

11.
Front Microbiol ; 12: 751531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867871

RESUMO

Human hepatitis Delta virus (HDV) infection is associated to the most severe viral hepatic disease, including severe acute liver decompensation and progression to cirrhosis, and hepatocellular carcinoma. HDV is a satellite of hepatitis B virus (HBV) that requires the HBV envelope proteins for assembly of HDV virions. HDV and HBV exhibit a large genetic diversity that extends, respectively to eight (HDV-1 to -8) and to ten (HBV/A to/J) genotypes. Molecular determinants of HDV virion assembly consist of a C-terminal Proline-rich domain in the large Hepatitis Delta Antigen (HDAg) protein, also known as the Delta packaging domain (DPD) and of a Tryptophan-rich domain, the HDV matrix domain (HMD) in the C-terminal region of the HBV envelope proteins. In this study, we performed a systematic genotyping of HBV and HDV in a cohort 1,590 HDV-RNA-positive serum samples collected between 2001 to 2014, from patients originated from diverse parts of the world, thus reflecting a large genetic diversity. Among these samples, 526 HBV (HBV/A, B, C, D, E, and G) and HDV (HDV-1, 2, 3, and 5 to -8) genotype couples could be obtained. We provide results of a comprehensive analysis of the amino-acid sequence conservation within the HMD and structural and functional features of the DPD that may account for the yet optimal interactions between HDV and its helper HBV.

12.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925087

RESUMO

Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which developed a liver pathology very similar to the human disease and allowed us to perform mechanistic studies. We have generated different AAV-HDV mutants to eliminate the expression of HDV antigens (HDAgs), and we have characterized them both in vitro and in vivo. We confirmed that S-HDAg is essential for HDV replication and cannot be replaced by L-HDAg or host cellular proteins, and that L-HDAg is essential to produce the HDV infectious particle and inhibits its replication. We have also found that lack of L-HDAg resulted in the increase of S-HDAg expression levels and the exacerbation of liver damage, which was associated with an increment in liver inflammation but did not require T cells. Interestingly, early expression of L-HDAg significantly ameliorated the liver damage induced by the mutant expressing only S-HDAg. In summary, the use of AAV-HDV represents a very attractive platform to interrogate in vivo the role of viral components in the HDV life cycle and to better understand the mechanism of HDV-induced liver pathology.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Hepatite D/virologia , Vírus Delta da Hepatite/fisiologia , Replicação Viral , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Engenharia Genética , Hepatite D/patologia , Humanos , Técnicas In Vitro , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos , Mutação
13.
Viruses ; 13(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452437

RESUMO

Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain.


Assuntos
Genótipo , Vírus Delta da Hepatite/genética , Edição de RNA/genética , RNA Viral/sangue , Replicação Viral/genética , Genoma Viral/genética , Hepatite D/sangue , Hepatite D/virologia , Vírus Delta da Hepatite/classificação , Vírus Delta da Hepatite/metabolismo , Vírus Delta da Hepatite/patogenicidade , Antígenos da Hepatite delta/sangue , Antígenos da Hepatite delta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fases de Leitura Aberta
14.
Viruses ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960640

RESUMO

Hepatitis Delta virus (HDV) is a satellite of the Hepatitis B virus (HBV) and causes severe liver disease. The estimated prevalence of 15-20 million infected people worldwide may be underestimated as international diagnostic guidelines are not routinely followed. Possible reasons for this include the limited awareness among healthcare providers, the requirement for costly equipment and specialized training, and a lack of access to reliable tests in regions with poor medical infrastructure. In this study, we developed an HDV rapid test for the detection of antibodies against the hepatitis delta antigen (anti-HDV) in serum and plasma. The test is based on a novel recombinant large hepatitis delta antigen that can detect anti-HDV in a concentration-dependent manner with pan-genotypic activity across all known HDV genotypes. We evaluated the performance of this test on a cohort of 474 patient samples and found that it has a sensitivity of 94.6% (314/332) and a specificity of 100% (142/142) when compared to a diagnostic gold-standard ELISA. It also works robustly for a broad range of anti-HDV titers. We anticipate this novel HDV rapid test to be an important tool for epidemiological studies and clinical diagnostics, especially in regions that currently lack access to reliable HDV testing.


Assuntos
Anticorpos Antivirais/sangue , Hepatite D Crônica/diagnóstico , Hepatite D/diagnóstico , Vírus Delta da Hepatite/imunologia , Antígenos da Hepatite delta/imunologia , Testes Imediatos , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Genótipo , Hepatite D/virologia , Hepatite D Crônica/virologia , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/isolamento & purificação , Humanos , Prevalência , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos , Fatores de Tempo
15.
JHEP Rep ; 3(4): 100294, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34308324

RESUMO

HDV is a small, defective RNA virus that requires the HBsAg of HBV for its assembly, release, and transmission. Chronic HBV/HDV infection often has a severe clinical outcome and is difficult to treat. The important role of a robust virus-specific T cell response for natural viral control has been established for many other chronic viral infections, but the exact role of the T cell response in the control and progression of chronic HDV infection is far less clear. Several recent studies have characterised HDV-specific CD4+ and CD8+ T cell responses on a peptide level. This review comprehensively summarises all HDV-specific T cell epitopes described to date and describes our current knowledge of the role of T cells in HDV infection. While we now have better tools to study the adaptive anti-HDV-specific T cell response, further efforts are needed to define the HLA restriction of additional HDV-specific T cell epitopes, establish additional HDV-specific MHC tetramers, understand the degree of cross HDV genotype reactivity of individual epitopes and understand the correlation of the HBV- and HDV-specific T cell response, as well as the breadth and specificity of the intrahepatic HDV-specific T cell response.

16.
JHEP Rep ; 2(3): 100098, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32382723

RESUMO

BACKGROUND & AIMS: HDV infection induces the most severe form of human viral hepatitis. However, the specific reasons for the severity of the disease remain unknown. Recently, we developed an HDV replication mouse model in which, for the first time, liver damage was detected. METHODS: HDV and HBV replication-competent genomes and HDV antigens were delivered to mouse hepatocytes using adeno-associated vectors (AAVs). Aminotransferase elevation, liver histopathology, and hepatocyte death were evaluated and the immune infiltrate was characterized. Liver transcriptomic analysis was performed. Mice deficient for different cellular and molecular components of the immune system, as well as depletion and inhibition studies, were employed to elucidate the causes of HDV-mediated liver damage. RESULTS: AAV-mediated HBV/HDV coinfection caused hepatocyte necrosis and apoptosis. Activated T lymphocytes, natural killer cells, and proinflammatory macrophages accounted for the majority of the inflammatory infiltrate. However, depletion studies and the use of different knockout mice indicated that neither T cells, natural killer cells nor macrophages were necessary for HDV-induced liver damage. Transcriptomic analysis revealed a strong activation of type I and II interferon (IFN) and tumor necrosis factor (TNF)-α pathways in HBV/HDV-coinfected mice. While the absence of IFN signaling had no effect, the use of a TNF-α antagonist resulted in a significant reduction of HDV-associated liver injury. Furthermore, hepatic expression of HDAg resulted in the induction of severe liver damage, which was T cell- and TNF-α-independent. CONCLUSIONS: Both host (TNF-α) and viral (HDV antigens) factors play a relevant role in HDV-induced liver damage. Importantly, pharmacological inhibition of TNF-α may offer an attractive strategy to aid control of HDV-induced acute liver damage. LAY SUMMARY: Chronic hepatitis delta constitutes the most severe form of viral hepatitis. There is limited data on the mechanism involved in hepatitis delta virus (HDV)-induced liver pathology. Our data indicate that a cytokine (TNF-α) and HDV antigens play a relevant role in HDV-induced liver damage.

17.
Viruses ; 10(7)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987240

RESUMO

Chronic HBV + HDV infection is associated with greater risk of liver fibrosis, earlier hepatic decompensation, and liver cirrhosis hepatocellular carcinoma compared to HBV mono-infection. However, to-date no direct anti-HDV drugs are available in clinical practice. Here, we identified conserved and variable regions in HBsAg and HDAg domains in HBV + HDV infection, a critical finding for the design of innovative therapeutic agents. The extent of amino-acid variability was measured by Shannon-Entropy (Sn) in HBsAg genotype-d sequences from 31 HBV + HDV infected and 62 HBV mono-infected patients (comparable for demographics and virological-parameters), and in 47 HDAg genotype-1 sequences. Positions with Sn = 0 were defined as conserved. The percentage of conserved HBsAg-positions was significantly higher in HBV + HDV infection than HBV mono-infection (p = 0.001). Results were confirmed after stratification for HBeAg-status and patients' age. A Sn = 0 at specific positions in the C-terminus HBsAg were correlated with higher HDV-RNA, suggesting that conservation of these positions can preserve HDV-fitness. Conversely, HDAg was characterized by a lower percentage of conserved-residues than HBsAg (p < 0.001), indicating higher functional plasticity. Furthermore, specific HDAg-mutations were significantly correlated with higher HDV-RNA, suggesting a role in conferring HDV replicative-advantage. Among HDAg-domains, only the virus-assembly signal exhibited a high genetic conservation (75% of conserved-residues). In conclusion, HDV can constrain HBsAg genetic evolution to preserve its fitness. The identification of conserved regions in HDAg poses the basis for designing innovative targets against HDV-infection.


Assuntos
Evolução Molecular , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B/virologia , Vírus Delta da Hepatite/fisiologia , Interações Microbianas , Adulto , Antivirais/farmacologia , Coinfecção , Feminino , Variação Genética , Genótipo , Hepatite B/diagnóstico , Antígenos de Superfície da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Filogenia , Conformação Proteica , RNA Viral , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
Viruses ; 10(9)2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227597

RESUMO

Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.


Assuntos
Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , RNA Viral , Solanum tuberosum/virologia , Transcrição Gênica , Viroides/fisiologia , Conformação de Ácido Nucleico , Doenças das Plantas/genética , Splicing de RNA , RNA Viral/química , RNA Viral/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Replicação Viral
19.
BMC Res Notes ; 10(1): 340, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28750657

RESUMO

OBJECTIVE: Patients with dual hepatitis B (HBV) and hepatitis D (HDV) virus infection are at an increased risk of progression to liver cirrhosis and hepatocellular carcinoma than patients with a single viral infection. Treatment of viral hepatitis due to dual HBV/HDV infection represents a challenge. Currently there is no vaccine against HDV. Recombinant production of HDV antigen (HDAg) is the first step towards a potential vaccine candidate and the development of assays for HDV detection. RESULTS: This study demonstrates the expression of one HDAg isoform, S-HDAg, in Pichia pastoris. A recombinant vector carrying a tagged gene encoding S-HDAg under the control of the methanol-inducible promoter AOX1 was designed and integrated into P. pastoris X33. The protein, which was purified using a Ni2+ affinity column and eluted at 100-150 mM imidazole, has potential as a recombinant antigen for further study.


Assuntos
Vírus Delta da Hepatite , Antígenos da Hepatite delta , Pichia , Humanos
20.
J Clin Transl Hepatol ; 3(3): 220-9, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26623269

RESUMO

The mechanisms determining persistence of hepatitis B virus (HBV) infection and long-term pathogenesis of HBV-associated liver disease appear to be multifactorial. Although viral replication can be efficiently suppressed by the antiviral treatments currently available, viral clearance is generally not achieved since HBV has developed unique replication strategies, enabling persistence of its genome within the infected hepatocytes. Moreover, no direct antiviral therapy exists for the more than 15 million people worldwide that are also coinfected with the hepatitis delta virus (HDV), a defective virus that needs the HBV envelope proteins for propagation. The limited availability of robust HBV and HDV infection systems has hindered the understanding of the complex network of virus-virus and virus-host interactions that are established in the course of infection and slowed down progress in drug development. Since chronic HBV/HDV coinfection leads to the most severe form of chronic viral hepatitis, elucidation of the molecular mechanisms regulating virus-host interplay and pathogenesis are urgently needed. This article summarizes the current knowledge regarding the interactions among HBV, HDV, and the infected target cell and discusses the dependence of HDV on HBV activity and possible future therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa