Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.511
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220461

RESUMO

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Assuntos
HDL-Colesterol/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Células 3T3 , Animais , Transporte Biológico/fisiologia , Antígenos CD36/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Alinhamento de Sequência , Esteróis/metabolismo
2.
Cell ; 169(7): 1228-1239.e10, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602350

RESUMO

ABCA1, an ATP-binding cassette (ABC) subfamily A exporter, mediates the cellular efflux of phospholipids and cholesterol to the extracellular acceptor apolipoprotein A-I (apoA-I) for generation of nascent high-density lipoprotein (HDL). Mutations of human ABCA1 are associated with Tangier disease and familial HDL deficiency. Here, we report the cryo-EM structure of human ABCA1 with nominal resolutions of 4.1 Å for the overall structure and 3.9 Å for the massive extracellular domain. The nucleotide-binding domains (NBDs) display a nucleotide-free state, while the two transmembrane domains (TMDs) contact each other through a narrow interface in the intracellular leaflet of the membrane. In addition to TMDs and NBDs, two extracellular domains of ABCA1 enclose an elongated hydrophobic tunnel. Structural mapping of dozens of disease-related mutations allows potential interpretation of their diverse pathogenic mechanisms. Structural-based analysis suggests a plausible "lateral access" mechanism for ABCA1-mediated lipid export that may be distinct from the conventional alternating-access paradigm.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Domínios Proteicos , Alinhamento de Sequência
3.
Circ Res ; 135(2): 335-349, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38828596

RESUMO

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.


Assuntos
Apolipoproteína A-I , Aterosclerose , Diabetes Mellitus Tipo 1 , Receptores de LDL , Animais , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/sangue , Aterosclerose/patologia , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangue , Camundongos , Receptores de LDL/genética , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Apolipoproteína A-I/sangue , Apolipoproteína A-I/metabolismo , Masculino , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/sangue , Camundongos Knockout , Feminino , Camundongos Endogâmicos C57BL , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Camundongos Transgênicos , Apolipoproteína B-100/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/sangue , Pessoa de Meia-Idade , Modelos Animais de Doenças , Adulto
4.
Proc Natl Acad Sci U S A ; 120(4): e2209528120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649428

RESUMO

Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I). We demonstrate that the 18-mer protects against sepsis-related injury and improves survival in cecal ligation and puncture mice and reduces inflammation in an endotoxemia mouse model. The 18-mer neutralizes the cytotoxic histone-3 (H3) through direct interaction with the protein. Furthermore, the 18-mer enlists the actions of ApoA-I to dissociate the complex of HMGB1 and lipopolysaccharide, a toxic complex contributing to cell death and tissue damage in sepsis. Our study provides strong evidence that the 18-mer mitigates inflammatory damage in sepsis by targeting numerous mediators, setting it apart from other potential therapies with a single target.


Assuntos
Endotoxemia , Proteína HMGB1 , Sepse , Camundongos , Animais , Proteína HMGB1/metabolismo , Apolipoproteína A-I , Sepse/tratamento farmacológico , Sepse/metabolismo , Lipopolissacarídeos , Heparitina Sulfato , Modelos Animais de Doenças
5.
Circ Res ; 132(11): 1521-1545, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228232

RESUMO

Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Aterosclerose/metabolismo , Placa Aterosclerótica/complicações , Colesterol/metabolismo , HDL-Colesterol , Inflamação/tratamento farmacológico , Inflamação/complicações , Arildialquilfosfatase
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1191-1201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660807

RESUMO

Several studies in animal models and human cohorts have recently suggested that HDLs (high-density lipoproteins) not only modulate innate immune responses but also adaptative immune responses, particularly CD4+ T cells. CD4+ T cells are central effectors and regulators of the adaptive immune system, and any alterations in their homeostasis contribute to the pathogenesis of cardiovascular diseases, autoimmunity, and inflammatory diseases. In this review, we focus on how HDLs and their components affect CD4+ T-cell homeostasis by modulating cholesterol efflux, immune synapsis, proliferation, differentiation, oxidative stress, and apoptosis. While the effects of apoB-containing lipoproteins on T cells have been relatively well established, this review focuses specifically on new connections between HDL and CD4+ T cells. We present a model where HDL may modulate T cells through both direct and indirect mechanisms.


Assuntos
Linfócitos T CD4-Positivos , Lipoproteínas HDL , Humanos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Lipoproteínas HDL/metabolismo , Anti-Inflamatórios , Transdução de Sinais , Estresse Oxidativo , Inflamação/imunologia , Inflamação/metabolismo , Apoptose , Imunidade Adaptativa , Homeostase , Proliferação de Células
7.
Cell Mol Life Sci ; 81(1): 52, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253888

RESUMO

Apolipoprotein B (APOB) is a constituent of unique lipoprotein particles (LPPs) produced in the retinal pigment epithelium (RPE), which separates the neural retina from Bruch's membrane (BrM) and choroidal circulation. These LPPs accumulate with age in BrM and contribute to the development of age-related macular degeneration, a major blinding disease. The APOB100 transgenic expression in mice, which unlike humans lack the full-length APOB100, leads to lipid deposits in BrM. Herein, we further characterized APOB100 transgenic mice. We imaged mouse retina in vivo and assessed chorioretinal lipid distribution, retinal sterol levels, retinal cholesterol input, and serum content as well as tracked indocyanine green-bound LPPs in mouse plasma and retina after an intraperitoneal injection. Retinal function and differentially expressed proteins were also investigated. APOB100 transgenic mice had increased serum LDL content and an additional higher density HDL subpopulation; their retinal cholesterol levels (initially decreased) became normal with age. The LPP cycling between the RPE and choroidal circulation was increased. Yet, LPP trafficking from the RPE to the neural retina was limited, and total retinal cholesterol input did not change. There were lipid deposits in the RPE and BrM, and retinal function was impaired. Retinal proteomics provided mechanistic insights. Collectively, our data suggested that the serum LDL/HDL ratio may not affect retinal pathways of cholesterol input as serum LPP load is mainly handled by the RPE, which offloads LPP excess to the choroidal circulation rather than neural retina. Different HDL subpopulations should be considered in studies linking serum LPPs and age-related macular degeneration.


Assuntos
Degeneração Macular , Retina , Humanos , Camundongos , Animais , Camundongos Transgênicos , Epitélio Pigmentado da Retina , Colesterol , Degeneração Macular/genética
8.
Mol Cell Proteomics ; 22(8): 100600, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343697

RESUMO

High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Lipoproteínas HDL/metabolismo , Ligação Proteica , Espectrometria de Massas
9.
Eur Heart J ; 45(27): 2410-2418, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38700053

RESUMO

BACKGROUND AND AIMS: Despite growing evidence that apolipoprotein B (apoB) is the most accurate marker of atherosclerotic cardiovascular disease (ASCVD) risk, its adoption in clinical practice has been low. This investigation sought to determine whether low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), and triglycerides are sufficient for routine cardiovascular care. METHODS: A sample of 293 876 UK Biobank adults (age: 40-73 years, 42% men), free of cardiovascular disease, with a median follow-up for new-onset ASCVD of 11 years was included. Distribution of apoB at pre-specified levels of LDL-C, non-HDL-C, and triglycerides was examined graphically, and 10-year ASCVD event rates were compared for high vs. low apoB. Residuals of apoB were constructed after regressing apoB on LDL-C, non-HDL-C, and log-transformed triglycerides and used as predictors in a proportional hazards regression model for new-onset ASCVD adjusted for standard risk factors, including HDL-C. RESULTS: ApoB was highly correlated with LDL-C and non-HDL-C (Pearson's r = .96, P < .001 for both) but less so with log triglycerides (r = .42, P < .001). However, apoB ranges necessary to capture 95% of all observations at pre-specified levels of LDL-C, non-HDL-C, or triglycerides were wide, spanning 85.8-108.8 md/dL when LDL-C 130 mg/dL, 88.3-112.4 mg/dL when non-HDL-C 160 mg/dL, and 67.8-147.4 md/dL when triglycerides 115 mg/dL. At these levels (±10 mg/dL), 10-year ASCVD rates for apoB above mean + 1 SD vs. below mean - 1 SD were 7.3 vs. 4.0 for LDL-C, 6.4 vs. 4.6 for non-HDL-C, and 7.0 vs. 4.6 for triglycerides (all P < .001). With 19 982 new-onset ASCVD events on follow-up, in the adjusted model, residual apoB remained statistically significant after accounting for LDL-C and HDL-C (hazard ratio 1.06, 95% confidence interval 1.0-1.07), after accounting for non-HDL-C and HDL-C (hazard ratio 1.04, 95% confidence interval 1.03-1.06), and after accounting for triglycerides and HDL-C (hazard ratio 1.13, 95% confidence interval 1.12-1.15). None of the residuals of LDL-C, non-HDL-C, or of log triglycerides remained significant when apoB was included in the model. CONCLUSIONS: High variability of apoB at individual levels of LDL-C, non-HDL-C, and triglycerides coupled with meaningful differences in 10-year ASCVD rates and significant residual information contained in apoB for prediction of new-onset ASCVD events demonstrate that LDL-C, non-HDL-C, and triglycerides are not adequate proxies for apoB in clinical care.


Assuntos
Apolipoproteínas B , Biomarcadores , LDL-Colesterol , Triglicerídeos , Humanos , Triglicerídeos/sangue , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , LDL-Colesterol/sangue , Biomarcadores/sangue , Apolipoproteínas B/sangue , HDL-Colesterol/sangue , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia
10.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479648

RESUMO

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas LDL , Transcitose , Animais , Humanos , Masculino , Camundongos , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica , Receptores Depuradores Classe B/metabolismo
11.
J Lipid Res ; 65(2): 100494, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160756

RESUMO

HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Hipertrigliceridemia , Quinolinas , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Proteoma , Diglicerídeos , Lipidômica , Ceramidas , Colesterol/metabolismo , Hipertrigliceridemia/tratamento farmacológico , HDL-Colesterol , Triglicerídeos , Fosfatidilcolinas
12.
J Lipid Res ; 65(1): 100482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052254

RESUMO

Excess cholesterol originating from nonhepatic tissues is transported within HDL particles to the liver for metabolism and excretion. Cholesterol efflux is initiated by lipid-free or lipid-poor apolipoprotein A1 interacting with the transmembrane protein ABCA1, a key player in cholesterol homeostasis. Defective ABCA1 results in reduced serum levels of HDL cholesterol, deposition of cholesterol in arteries, and an increased risk of early onset CVD. Over 300 genetic variants in ABCA1 have been reported, many of which are associated with reduced HDL cholesterol levels. Only a few of these have been functionally characterized. In this study, we have analyzed 51 previously unclassified missense variants affecting the extracellular domains of ABCA1 using a sensitive, easy, and low-cost fluorescence-based assay. Among these, only 12 variants showed a distinct loss-of-function phenotype, asserting their direct association with severe HDL disorders. These findings emphasize the crucial role of functional characterization of genetic variants in pathogenicity assessment and precision medicine. The functional rescue of ABCA1 loss-of-function variants through proteasomal inhibition or by the use of the chemical chaperone 4-phenylbutyric acid was genotype specific. Genotype-specific responses were also observed for the ability of apolipoprotein A1 to stabilize the different ABCA1 variants. In view of personalized medicine, this could potentially form the basis for novel therapeutic strategies.


Assuntos
Apolipoproteína A-I , Colesterol , HDL-Colesterol , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Fluorescência , Transportador 1 de Cassete de Ligação de ATP/genética , Colesterol/metabolismo , Mutação de Sentido Incorreto
13.
J Lipid Res ; 65(6): 100568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795859

RESUMO

Plasma lipid levels are modulated by systemic infection and inflammation; it is unknown whether these changes reflect inflammatory responses or caused directly by pathogen presence. We explored the hypothesis that anti-inflammatory intervention via interleukin 6 receptor (IL-6R) blockade would influence plasma lipid levels during severe infection and evaluated the association of plasma lipid changes with clinical outcomes. Sarilumab (monoclonal antibody blocking IL-6R) efficacy was previously assessed in patients with coronavirus disease 2019 (COVID-19) (NCT04315298). This analysis determined whether strong inflammatory reduction by sarilumab in patients with COVID-19 pneumonia of increasing severity (severe, critical, multisystem organ dysfunction) affected plasma lipid changes between day 1 and day 7 of study therapy. Baseline lipid levels reflected the presence of acute systemic infection, characterized by very low HDL-C, low LDL-C, and moderately elevated triglycerides (TGs). Disease severity was associated with progressively more abnormal lipid levels. At day 7, median lipid levels increased more in the sarilumab versus placebo group (HDL-C +10.3%, LDL-C +54.7%, TG +32% vs. HDL-C +1.7%, LDL-C +15.4%, TG +8.8%, respectively). No significant association between lipid changes and clinical outcomes was observed. In conclusion, severe-to-critical COVID-19 pneumonia causes profound HDL-C depression that is only modestly responsive to strong anti-IL-6R inflammatory intervention. Conversely, LDL-C depression is strongly responsive to IL-6R blockade, with LDL-C levels likely returning to the predisease set point. These results advance our understanding of the complex relationship between serum lipids and infection/inflammation and suggest that HDL-C depression during acute contagious disease is driven by infection and not IL-6-mediated inflammation.


Assuntos
Anticorpos Monoclonais Humanizados , Tratamento Farmacológico da COVID-19 , COVID-19 , Lipídeos , Receptores de Interleucina-6 , Humanos , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/sangue , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , COVID-19/sangue , COVID-19/complicações , Lipídeos/sangue , Idoso , Hospitalização , Resultado do Tratamento , SARS-CoV-2 , Adulto , Índice de Gravidade de Doença
14.
J Lipid Res ; 65(1): 100481, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008260

RESUMO

In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo
15.
Diabetologia ; 67(6): 974-984, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38376536

RESUMO

Dyslipidaemias are major cardiovascular risk factors, especially in people with diabetes. In this area, next-generation therapies targeting circulating lipoparticle metabolism (LDL, VLDL, chylomicrons, HDL) have recently been approved by the European and US medical agencies, including anti- proprotein convertase subtilisin/kexin 9 (PCSK9) antibodies; an siRNA targeting PCSK9; bempedoic acid, which targets ATP citrate lyase; an antisense oligonucleotide targeting apolipoprotein C-III; an anti-angiopoietin-like 3 antibody; and a purified omega-3 fatty acid, icosapent ethyl. Other therapies are in different phases of development. There are several important considerations concerning the link between these new lipid-lowering therapies and diabetes. First, since concerns were first raised in 2008 about an increased risk of new-onset diabetes mellitus (NODM) with intensive statin treatment, each new lipid-lowering therapy is being evaluated for its associated risk of NODM, particularly in individuals with prediabetes (impaired fasting glucose and/or impaired glucose tolerance). Second, people with diabetes represent a large proportion of those at high or very high cardiovascular risk in whom these lipid-lowering drugs are currently, or will be, prescribed. Thus, the efficacy of these drugs in subgroups with diabetes should also be closely considered, as well as any potential effects on glycaemic control. In this review, we describe the efficacy of next-generation therapies targeting lipoprotein metabolism in subgroups of people with diabetes and their effects on glycaemic control in individuals with diabetes and prediabetes and in normoglycaemic individuals.


Assuntos
Hiperlipidemias , Humanos , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-38958546

RESUMO

Monocytes are innate immune cells that are continuously produced in bone marrow which enter and circulate the vasculature. In response to nutrient scarcity, monocytes migrate back to bone marrow where upon refeeding they are re-released back into the bloodstream to replenish the circulation. In humans, the variability in monocyte behavior in response to fasting and refeeding has not been characterized. To investigate monocyte dynamics in humans we measured blood monocyte fluctuations in 354 clinically healthy individuals after a 12-hour overnight fast and at 3- and 6-hours after consuming a mixed macronutrient challenge meal. Using cluster analysis, we identified three distinct monocyte behaviors. Group 1 was characterized by relatively low fasting monocyte counts that markedly increased after consuming the test meal. Group 2 was characterized by relatively high fasting monocyte counts which decreased after meal consumption. Group 3, like Group 1, was characterized by lower fasting monocyte counts but increased to a lesser extent after consuming the meal. While monocyte fluctuations observed in Groups 1 and 3 align with the current paradigm of monocyte dynamics in response to fasting and refeeding, the atypical dynamic observed in Group 2 does not. While generally younger in age, Group 2 subjects had lower whole-body carbohydrate oxidation rates, lower HDL-cholesterol levels, delayed postprandial declines in salivary cortisol, and reduced postprandial peripheral microvascular endothelial function. These unique characteristics were not explained by group differences in age, sex, or BMI. Taken together these results highlight distinct patterns of monocyte responsiveness to natural fluctuations in dietary fuel availability.

17.
Ann Hum Genet ; 88(4): 307-319, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38305494

RESUMO

BACKGROUND: Observational studies and meta-analyses have indicated associations between blood lipid profiles and asthma. However, the causal association is unknown. Therefore, this study investigated the causal relationship between blood lipid profiles and asthma using bidirectional Mendelian randomization analysis. METHODS AND MATERIALS: Our analyses were performed using individual data from the Taiwan Biobank and summary statistics from the Asian Genetic Epidemiology Network (AGEN). The causal estimates between all genetic variants, exposures of interest and asthma were calculated using an inverse-variance weighted method based on Taiwan Biobank data from 24,853 participants (mean age, 48.8 years; 49.8% women). Sensitivity analyses, including the weighted median, MR Egger regression, MR-PRESSO, mode-based estimate, contamination mixture methods, and leave-one-out analysis, were applied to validate the results and detect pleiotropy. RESULTS: In the inverse-variance weighted (IVW) analyses, we found evidence of a significant causal effect of an increased level of low-density lipoprotein cholesterol on asthma risk (ßIVW = 1.338, p = 0.001). A genetically decreased level of high-density lipoprotein cholesterol was also associated with asthma risk (ßIVW = -0.338, p = 0.01). We also found that an increased level of total cholesterol was associated with an increased risk of asthma (ßIVW = 1.343, p = 0.001). Several sensitivity analyses generated consistent findings. We did not find evidence to support the causality between asthma and blood lipid profiles in either direction. CONCLUSION: Our results supported the causal relationship between higher levels of LDL cholesterol and total cholesterol and lower levels of HDL cholesterol with an increased risk of asthma.


Assuntos
Asma , Análise da Randomização Mendeliana , Humanos , Asma/genética , Asma/sangue , Asma/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , HDL-Colesterol/sangue , HDL-Colesterol/genética , Lipídeos/sangue , LDL-Colesterol/sangue , Polimorfismo de Nucleotídeo Único , Adulto , Taiwan/epidemiologia , Fatores de Risco , Predisposição Genética para Doença
18.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981808

RESUMO

High-density lipoproteins (HDLs) prevent cell death induced by a variety of cytotoxic drugs. The underlying mechanisms are however still poorly understood. Here, we present evidence that HDLs efficiently protect cells against thapsigargin (TG), a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor, by extracting the drug from cells. Drug efflux could also be triggered to some extent by low-density lipoproteins and serum. HDLs did not reverse the non-lethal mild ER stress response induced by low TG concentrations or by SERCA knockdown, but HDLs inhibited the toxic SERCA-independent effects mediated by high TG concentrations. HDLs could extract other lipophilic compounds, but not hydrophilic substances. This work shows that HDLs utilize their capacity of loading themselves with lipophilic compounds, akin to their ability to extract cellular cholesterol, to reduce the cell content of hydrophobic drugs. This can be beneficial if lipophilic xenobiotics are toxic but may be detrimental to the therapeutic benefit of lipophilic drugs such as glibenclamide.


Assuntos
Lipoproteínas HDL , Preparações Farmacêuticas , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Tapsigargina/farmacologia
19.
J Transl Med ; 22(1): 263, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462608

RESUMO

BACKGROUND: Angiopoietin-like protein 3 (ANGPTL3) is secreted by hepatocytes and inhibits lipoprotein lipase and endothelial lipase activity. Previous studies reported the correlation between plasma ANGPTL3 levels and high-density lipoprotein (HDL). Recently ANGPTL3 was found to preferentially bind to HDL in healthy human circulation. Here, we examined whether ANGPTL3, as a component of HDL, modulates HDL function and affects HDL other components in human and mice with non-diabetes or type 2 diabetes mellitus. METHODS: HDL was isolated from the plasma of female non-diabetic subjects and type-2 diabetic mellitus (T2DM) patients. Immunoprecipitation, western blot, and ELISA assays were used to examine ANGPTL3 levels in HDL. Db/m and db/db mice, AAV virus mediated ANGPTL3 overexpression and knockdown models and ANGPTL3 knockout mice were used. The cholesterol efflux capacity induced by HDL was analyzed in macrophages preloaded with fluorescent cholesterol. The anti-inflammation capacity of HDL was assessed using flow cytometry to measure VCAM-1 and ICAM-1 expression levels in TNF-α-stimulated endothelial cells pretreated with HDL. RESULTS: ANGPTL3 was found to bind to HDL and be a component of HDL in both non-diabetic subjects and T2DM patients. Flag-ANGPTL3 was found in the HDL of transgenic mice overexpressing Flag-ANGPTL3. ANGPLT3 of HDL was positively associated with cholesterol efflux in female non-diabetic controls (r = 0.4102, p = 0.0117) but not in female T2DM patients (r = - 0.1725, p = 0.3224). Lower ANGPTL3 levels of HDL were found in diabetic (db/db) mice compared to control (db/m) mice and were associated with reduced cholesterol efflux and inhibition of VCAM-1 and ICAM-1 expression in endothelial cells (p < 0.05 for all). Following AAV-mediated ANGPTL3 cDNA transfer in db/db mice, ANGPTL3 levels were found to be increased in HDL, and corresponded to increased cholesterol efflux and decreased ICAM-1 expression. In contrast, knockdown of ANGPTL3 levels in HDL by AAV-mediated shRNA transfer led to a reduction in HDL function (p < 0.05 for both). Plasma total cholesterol, total triglycerides, HDL-c, protein components of HDL and the cholesterol efflux function of HDL were lower in ANGPTL3-/- mice than ANGPTL3+/+ mice, suggesting that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. CONCLUSION: ANGPTL3 was identified as a component of HDL in humans and mice. ANGPTL3 of HDL regulated cholesterol efflux and the anti-inflammatory functions of HDL in T2DM mice. Both the protein components of HDL and cholesterol efflux capacity of HDL were decreased in ANGPTL3-/- mice. Our findings suggest that ANGPTL3 in HDL may regulate HDL function by disrupting the balance of protein components in HDL. Our study contributes to a more comprehensive understanding of the role of ANGPTL3 in lipid metabolism.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Diabetes Mellitus Tipo 2 , Animais , Feminino , Humanos , Camundongos , Proteínas Semelhantes a Angiopoietina , Colesterol , Células Endoteliais , Molécula 1 de Adesão Intercelular , Lipoproteínas HDL , Triglicerídeos , Molécula 1 de Adesão de Célula Vascular
20.
J Med Virol ; 96(4): e29586, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587173

RESUMO

Inappropriate sinus tachycardia (IST) is one of the manifestations of the post-COVID-19 syndrome (PCS), which pathogenesis remains largely unknown. This study aimed to identify potential risk factors for IST in individuals with PCS. The 1349 patients with PCS were included into the study. Clinical examination, 24H Holter ECG, 24H ambulatory blood pressure monitoring and biochemical tests were performed 12-16 weeks after the COVID-19 in all participants. IST was found in 69 (3.5%) individuals. In the clinical assessment IST patients were characterized by a higher age (p < 0.001) and lower prevalence of the diagnosed hypertension (p = 0.012), compared to remaining patients. Biochemical testing showed higher serum triglycerides (1.66 vs. 1.31 pmol/L, p = 0.007) and higher prevalence of a low high-density lipoprotein (HDL) cholesterol (24.6% vs. 15.2%, p = 0.035) in the IST group. Subsequently, the triglicerydes (TG)/HDL ratio, an indicator of insulin resistance, was significantly higher in the IST individuals (3.2 vs. 2.4, p = 0.005). 24H monitoring revealed a significantly higher minimum diastolic, maximum systolic and mean arterial blood pressure values in the IST group (p < 0.001 for all), suggesting a high prevalence of undiagnosed hypertension. A multivariate analysis confirmed the predictive value TG/HDL ratio >3 (OR 2.67, p < 0.001) as predictors of IST development. A receiver operating characteristic curve analysis of the relationship between the TG/HDL ratio and the IST risk showed that the predictive cut-off point for this parameter was 2.46 (area under the ROC curve = 0.600, p = 0.004). Based on these findings, one can conclude that insulin resistance seems to be a risk factor of IST, a common component of PCS.


Assuntos
COVID-19 , Hipertensão , Resistência à Insulina , Humanos , Estudos Retrospectivos , Taquicardia Sinusal/diagnóstico , Lipoproteínas HDL , Monitorização Ambulatorial da Pressão Arterial , Síndrome de COVID-19 Pós-Aguda , Triglicerídeos , HDL-Colesterol , Fatores de Risco , Hipertensão/complicações , Hipertensão/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa