Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biochem Biophys Res Commun ; 576: 59-65, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34482024

RESUMO

HER1-and HER2-targeted drugs are effective in cancer therapy, especially against lung, breast and colon malignancies; however, resistance of cancer cells to HER1-and HER2-targeted therapies is becoming a serious problem. The avidity/affinity constant (KA) and growth inhibitory effect of anti-HER3 rat monoclonal antibodies (mAb, Ab1∼Ab6) in the presence of therapeutic mAb or low-molecular-weight inhibitors against HER family proteins were analyzed by flow cytometry-based Scatchard plots (Splot) and cell proliferation assay. The KA of Ab3 and Ab6, but not Ab1 or Ab4, split into dual (high and low) modes of KA, and Ab6 exhibited greater anti-proliferative effects against LS-174T colon cancer cells in the presence of Pertuzumab (anti-HER2 mAb). A high KA by Ab6 and Ab6-mediated increased growth inhibition were observed against NCI-H1838 lung or BT474 breast cancer cells, respectively, in the presence of Panitumumab (anti-HER1 mAb) or Perutuzumab. A high KA by Ab6 and Ab6-mediated increased anti-proliferative effects against NCI-H1838 or BT474 were also respectively observed in the presence of Erlotinib (HER1 inhibitor) or Lapatinib (HER1/HER2 inhibitor). In HER1-knockout (KO) NCI-H1838, the reactivity and KA of Ab4 increased compared with in parent NCI-H1838. In HER1-KO or HER3-KO SW1116 colon cancer cells, dual modes of KA with Pertuzumab were noted, and the combination Ab6 and Pertuzumab promoted growth inhibition of HER1-KO, but not of parent SW1116.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Animais , Afinidade de Anticorpos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Ratos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/imunologia , Receptor ErbB-3/metabolismo , Transdução de Sinais
2.
J Transl Med ; 19(1): 408, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579737

RESUMO

BACKGROUND: Compared to the other members of human epidermal growth factor family receptors (HER), the role of HER3 has not been well defined in laryngeal cancer. The predictive and prognostic role of HER3 has been the focus of clinical attention but the research findings are contradictory, especially in laryngeal squamous cell carcinoma (LSCC). The variable localization of HER3 within cancer cells and the role of HER3 in primary and acquired resistance to HER1-targeted therapies remain unclear. METHODS: We performed a retrospective analysis of two cohorts of 66 homogeneous consecutive untreated primary advanced LSCC patients, in which co-expression of HER1, HER2 and HER3 receptors was investigated by semi-quantitative immunohistochemistry. The association of their pattern of expression with survival was evaluated by Kaplan-Meier and Cox's proportional hazard analyses. Multivariable Cox proportional hazards models were developed to predict median 2- and 3-year RFS and 2.5- and 5-year OS. The Akaike information criterion technique and backwards stepwise procedure were used for model selections. The performance of the final Cox models was assessed with respect to calibration and discrimination. RESULTS: Immunohistochemical labeling for HER1 and HER2 was localized both in the cell membrane and in the cytoplasm, while HER3 labeling was observed both in the cell cytoplasm and in the nucleus. HER3 expression was inversely correlated with HER1 positivity. The expression patterns of HERs were associated with tumor differentiation. In both cohorts of patients, HER1 expression was associated with reduced relapse-free (RFS) and overall survival (OS). In HER1 positive tumors, the co-expression with nuclear HER3 was associated with better RFS and OS, compared with HER3 negative tumors or tumors expressing HER3 at cytoplasmic level. HER3 expressing tumors had a higher Geminin/MCM7 ratio than HER3 negative ones, regardless of HER1 co-expression. Multivariable analyses identified age at diagnosis, tumor site, HER1, HER3 and age at diagnosis, tumor stage, HER1, HER3, as covariates significantly associated with RFS and OS, respectively. Bootstrapping verified the good fitness of these models for predicting survivals and the optimism-corrected C-indices were 0.76 and 0.77 for RFS and OS, respectively. CONCLUSIONS: Nuclear HER3 expression was strongly associated with favourable prognosis and allows to improve the prognostic stratification of patients with HER1 positive advanced LSCC carcinoma.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Biomarcadores Tumorais , Humanos , Recidiva Local de Neoplasia , Prognóstico , Receptor ErbB-3/genética , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço
3.
Breast Cancer Res ; 22(1): 48, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414394

RESUMO

BACKGROUND: The human epidermal growth factor receptor (HER) family, notably EGFR, is overexpressed in most triple-negative breast cancer (TNBC) cases and provides cancer cells with compensatory signals that greatly contribute to the survival and development of resistance in response to therapy. This study investigated the effects of Pan-HER (Symphogen, Ballerup, Denmark), a novel mixture of six monoclonal antibodies directed against members of the HER family EGFR, HER2, and HER3, in a preclinical trial of TNBC patient-derived xenografts (PDXs). METHODS: Fifteen low passage TNBC PDX tumor samples were transferred into the right mammary fat pad of mice for engraftment. When tumors reached an average size of 100-200 mm3, mice were randomized (n ≥ 6 per group) and treated following three 1-week cycles consisting of three times/week intraperitoneal (IP) injection of either formulation buffer (vehicle control) or Pan-HER (50 mg/kg). At the end of treatment, tumors were collected for Western blot, RNA, and immunohistochemistry analyses. RESULTS: All 15 TNBC PDXs were responsive to Pan-HER treatment, showing significant reductions in tumor growth consistent with Pan-HER-mediated tumor downmodulation of EGFR and HER3 protein levels and significantly decreased activation of associated HER family signaling pathways AKT and ERK. Tumor regression was observed in five of the models, which corresponded to those PDX tumor models with the highest level of HER family activation. CONCLUSIONS: The marked effect of Pan-HER in numerous HER family-dependent TNBC PDX models justifies further studies of Pan-HER in TNBC clinical trials as a potential therapeutic option.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Terapia de Alvo Molecular , Mutação , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
4.
Int J Cancer ; 139(9): 2095-105, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342948

RESUMO

The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting mAbs is development of acquired resistance through mechanisms such as alterted receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2 and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR. The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical development of Pan-HER in resistant settings.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Receptores ErbB/química , Neoplasias/metabolismo , Receptor ErbB-2/química , Receptor ErbB-3/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dimerização , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/química , Neoplasias/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo
5.
J Thorac Oncol ; 19(1): 106-118, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678511

RESUMO

INTRODUCTION: NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS: We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS: We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS: Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor ErbB-2 , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transdução de Sinais
6.
J Nucl Med ; 64(8): 1195-1202, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37268425

RESUMO

Metformin has effects beyond its antihyperglycemic properties, including altering the localization of membrane receptors in cancer cells. Metformin decreases human epidermal growth factor receptor (HER) membrane density. Depletion of cell-surface HER decreases antibody-tumor binding for imaging and therapeutic approaches. Here, we used HER-targeted PET to annotate antibody-tumor binding in mice treated with metformin. Methods: Small-animal PET annotated antibody binding in HER-expressing xenografts on administration of an acute versus a daily dose schedule of metformin. Analyses at the protein level in the total, membrane, and internalized cell extracts were performed to determine receptor endocytosis, HER surface and internalized protein levels, and HER phosphorylation. Results: At 24 h after injection of radiolabeled anti-HER antibodies, control tumors had higher antibody accumulation than tumors treated with an acute dose of metformin. These differences were temporal, and by 72 h, tumor uptake in acute cohorts was similar to uptake in control. Additional PET imaging revealed a sustained decrease in tumor uptake on daily metformin treatment compared with control and acute metformin cohorts. The effects of metformin on membrane HER were reversible, and after its removal, antibody-tumor binding was restored. The time- and dose-dependent effects of metformin-induced HER depletion observed preclinically were validated with immunofluorescence, fractionation, and protein analysis cell assays. Conclusion: The findings that metformin decreases cell-surface HER receptors and reduces antibody-tumor binding may have significant implications for the use of antibodies targeting these receptors in cancer treatment and molecular imaging.


Assuntos
Metformina , Neoplasias , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Metformina/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptores ErbB/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral
7.
Iran J Pathol ; 18(1): 96-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383157

RESUMO

Background & Objective: Iran is located in the esophageal cancer geographical belt. As multiple genetic alterations are responsible for the molecular pathogenesis of esophageal squamous cell cancer (ESCC), the role and frequency of HER2 expression, MMR deficiency, and PI3KCA mutation are not well defined. Methods: We carried out HER2/neu expression, dMMR/MSI high, and PI3KCA mutation analysis in specimens of patients with ESCC. We accessed archival tissue blocks related to specimens of 68 ESCC cases at the time of surgery following neoadjuvant chemoradiation. These patients underwent surgery during 2013-2018 at the Cancer Institute of Iran affiliated with the Tehran University of Medical Sciences in Tehran. Results: None of the patients showed HER2 expression, dMMR/MSI high, or PI3K mutations. Conclusion: dMMR/MSI-H and PI3KCA mutation and HER2 expression may not be reliable andfrequent targets for systemic therapy in patients with esophageal SCC.

8.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35158800

RESUMO

HER2+ breast cancer patients have an elevated risk of developing brain metastases (BM), despite adjuvant HER2-targeted therapy. The mechanisms underpinning this reduced intracranial efficacy are unclear. We optimised the in situ proximity ligation assay (PLA) for detection of the high-affinity neuregulin-1 receptor, HER2-HER3 (a key target of pertuzumab), in archival tissue samples and developed a pipeline for high throughput extraction of PLA data from fluorescent microscope image files. Applying this to a large BM sample cohort (n = 159) showed that BM from breast, ovarian, lung and kidney cancers have higher HER2-HER3 levels than other primary tumour types (melanoma, colorectal and prostate cancers). HER2 status, and tumour cell membrane expression of pHER2(Y1221/1222) and pHER3(Y1222) were positively, but not exclusively, associated with HER2-HER3 frequency. In an independent cohort (n = 78), BM had significantly higher HER2-HER3 levels than matching primary tumours (p = 0.0002). For patients who had two craniotomy procedures, HER2-HER3 dimer levels were lower in the consecutive lesion (n = 7; p = 0.006). We also investigated the effects of trastuzumab and pertuzumab on five different heterodimers in vitro: HER2-EGFR, HER2-HER4, HER2-HER3, HER3-HER4, HER3-EGFR. Treatment significantly altered the absolute frequencies of individual complexes in SKBr3 and/or MDA-MB-361 cells, but in the presence of neuregulin-1, the overall distribution was not markedly altered, with HER2-HER3 and HER2-HER4 remaining predominant. Together, these findings suggest that markers of HER2 and HER3 expression are not always indicative of dimerization, and that pertuzumab may be less effective at reducing HER2-HER3 dimerization in the context of excess neuregulin.

9.
Front Mol Biosci ; 9: 847835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295841

RESUMO

Members of the human epidermal growth factor receptor (HER) family, which includes HER1 (also known as EGFR), HER2, HER3 and HER4, have played a central role in regulating cell proliferation, survival, differentiation and migration. The overexpression of the HER family has been recognized as one of the most common cellular dysregulation associated with a wide variety of tumor types. Antibody-drug conjugates (ADCs) represent a new and promising class of anticancer therapeutics that combine the cancer specificity of antibodies with cytotoxicity of chemotherapeutic drugs. Two HER2-directed ADCs, trastuzumane-emtansine (T-DM1) and trastuzumab-deruxtecan (DS-8201a), have been approved for HER2-positive metastatic breast cancer by the U.S. Food and Drug Administration (FDA) in 2013 and 2019, respectively. A third HER2-directed ADC, disitamab vedotin (RC48), has been approved for locally advanced or metastatic gastric or gastroesophageal junction cancer by the NMPA (National Medical Products Administration) of China in 2021. A total of 11 ADCs that target HER family receptors (EGFR, HER2 or HER3) are currently under clinical trials. In this review article, we summarize the three approved ADCs (T-DM1, DS-8201a and RC48), together with the investigational EGFR-directed ADCs (ABT-414, MRG003 and M1231), HER2-directed ADCs (SYD985, ARX-788, A166, MRG002, ALT-P7, GQ1001 and SBT6050) and HER3-directed ADC (U3-1402). Lastly, we discuss the major challenges associated with the development of ADCs, and highlight the possible future directions to tackle these challenges.

10.
Pathol Res Pract ; 220: 153410, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33765474

RESUMO

BACKGROUND: In recent years, HER2 amplification has been evaluated as a potential prognostic biomarker and therapeutic target in urothelial carcinoma (UC). In this retrospective study, we aimed at exploring the prognostic role of HER2 amplification in UC, measured by chromogenic in situ hybridization (CISH). METHODS: We retrospectively evaluated the presence of HER2 amplification by using CISH in 31 UC patients followed at a single institution between 2018 and 2020. The primary objective was to assess the frequency of HER2 amplification and to compare clinical outcomes of HER2-amplified patients with non-amplified UCs. RESULTS: HER2 amplification was identified in 4 out of 31 patients (12.9 %). After a median follow-up of 28.1 months (95 % Confidence Intervals [CI] 11.2-45.1), median overall survival (OS) in the whole population was 10.9 months (95 % CI 3.5-22.1). Despite not reaching statistical significance, median OS was shorter in HER2-amplified patients (6.8 months, 95 % CI 3.9-9.7) compared to HER2-negative UCs (15.4 months, 95 % CI 7.5-23.3) (p = 0.45). CONCLUSIONS: Although limited by the small sample size, the results of our study suggest that HER2 amplifications by CISH could represent a prognostic factor for shorter survival in UC patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , Amplificação de Genes , Hibridização In Situ , Receptor ErbB-2/genética , Neoplasias Urológicas/genética , Urotélio/patologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma/mortalidade , Carcinoma/patologia , Carcinoma/terapia , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Neoplasias Urológicas/mortalidade , Neoplasias Urológicas/patologia , Neoplasias Urológicas/terapia
11.
J Steroid Biochem Mol Biol ; 201: 105698, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32404282

RESUMO

Estrogen receptor (ER)α and the human epidermal growth factor receptor (HER) family are inversely expressed in ERα-positive cancer in association with resistance to hormonal therapy, but the mechanism underlying their relationship remains unknown. We analyzed the effect of HER family ligands on the expression of ER and the HER family in ERα-positive MCF-7 and T47D breast cancer cell lines in 3D spheroid culture. Here, we demonstrated for the first time that heregulin-1ß (HRG), a HER3 and HER4 ligand, most effectively regulated ER/HER family expression by decreasing ERα mRNA expression and increasing HER family mRNA expression. HRG treatment attenuated fulvestrant-mediated growth inhibition, and promoted the migration of MCF-7 cells. Moreover, HRG increased the CD44+/CD24- cell fraction and side population cells, both of which are recognized as prospective breast cancer stem cell markers. HRG activated both phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways. Inhibitors of these pathways reduced the growth of MCF-7 cells, but the addition of HRG has different effects on these pathways. HRG blocked the inhibitory effect of mTOR inhibitors, such as rapamycin and everolimus, on cell growth but not that of a PI3K inhibitor. Furthermore, HRG slightly decreased the inhibitory effect of an AKT inhibitor on cell growth. In contrast, HRG enhanced the MEK inhibitor-induced inhibition of cell growth. These findings suggest that HRG-stimulated signaling pathways allow ERα-positive breast cancer cells to escape from growth inhibition caused by everolimus, via MAPK signaling and/or other signaling pathways. Everolimus improves progression-free survival in combination with exemestane as second-line therapy for metastatic hormone receptor-positive breast cancer. Our study suggests that HRG is a novel target for ERα-positive breast cancer therapy.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Neuregulina-1 , Receptor ErbB-2/genética , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/metabolismo , Everolimo/farmacologia , Feminino , Fulvestranto/farmacologia , Humanos , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento
12.
Oncol Rep ; 44(6): 2581-2594, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125153

RESUMO

Pancreatic cancer is one of the most aggressive, heterogeneous and fatal type of human cancers for which more effective therapeutic agents are urgently needed. Here, we investigated the sensitivity of a panel of seven human pancreatic cancer cell lines (HPCCLs) to treatment with various tyrosine kinase inhibitors (TKIs), cyclin­dependent kinase (CDK) inhibitors, an inhibitor of STAT3 stattic, and a cytotoxic agent gemcitabine both as single agents and in combination. The membranous expression of various receptors and the effect of selected agents on cell cycle distribution, cell signaling pathways and migration was determined using flow cytometry, western blot analysis and scratch wound healing assays, respectively. While the expression of both HER­3 and HER­4 was low or negative, the expression of EGFR and HER2 was high or intermediate in all HPCCLs. Of all the agents examined, the CDK1/2/5/9 inhibitor, dinacicilib, was the most potent agent which inhibited the proliferation of all seven HPCCLs with IC50 values of ≤10 nM, followed by SRC targeting TKI dasatinib (IC50 of ≤258 nM), gemcitabine (IC50 of ≤330 nM), stattic (IC50 of ≤2 µM) and the irreversible pan­HER TKI afatinib (IC50 of ≤2.95 µM). Treatment with afatinib and dasatinib inhibited the ligand­induced phosphorylation of EGFR and SRC respectively. Statistically significant associations were found between HER2 expression and response to treatment with the ALK/IGF­IR/InsR inhibitor ceritinib and fibroblast growth factor receptor (FGFR)1/2/3 inhibitor AZD4547, HER3 and IGF­IR expression and their response to treatment with TKIs targeting HER family members (erlotinib and afatinib), and c­MET and ALK7 expression and their response to treatment with stattic. Interestingly, treatment with a combination of afatinib with dasatinib and gemcitabine with dasatinib resulted in synergistic tumor growth inhibition in all HPCCLs examined. In contrast, the combination of afatinib with dinaciclib was found to be antagonistic. Finally, the treatment with afatinib, dasatinib and dinaciclib strongly inhibited the migration of all HPCCLs examined. In conclusion, the CDK1/2/5/9 inhibitor dinaciclib, irreversible pan­HER TKI afatinib and SRC targeting TKI dasatinib were most effective at inhibiting the proliferation and migration of HPCCLs and the combination of afatinib with dasatinib and gemcitabine with dasatinib led to synergistic tumor growth inhibition in all HPCCLs examined. Our results support further investigation on the therapeutic potential of these combinations in future clinical trials in pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Quinases Ciclina-Dependentes/metabolismo , Antagonismo de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento/metabolismo , Projetos de Pesquisa
13.
Eur J Pharmacol ; 863: 172705, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31574259

RESUMO

Gastric adenocarcinoma (GAC), the most common malignancy of the stomach, is the fourth most common and the second cause of cancer-related death worldwide. Although HER family plays a cardinal role in tumorigenesis of GAC, trastuzumab is the only approved anti-HER drug for this malignancy and development of resistance to trastuzumab is inevitable. Additionally, single-targeted HER inhibitors have demonstrated limited activity in GAC. Hence, there is a pressing need to devise more efficacious anti-HER therapeutic strategies. Here, we examined the anti-tumor activity of neratinb, a pan-HER inhibitor, on GAC cells. Anti-proliferative effects of neratinib were determined using a cell proliferation assay and crystal violet staining. Annexin V/PI staining, radiation therapy and anoikis resistance and wound healing assays were carried out to examine the effects of neratinib on apoptosis, radio-sensitivity and cell motility, respectively. Quantitative reverse transcription-PCR (qRT-PCR) analyses were applied to further investigate the anti-tumor activity of neratinib. We found that neratinib sensitized GAC cells to 5FU, carboplatin and oxaliplatin. Moreover, we found that neratinib was synergistic with trametinib (an approved MEK inhibitor) and foretinib (a c-MET inhibitor) and potentiated radio-sensitivity of GAC cells. Furthermore, we found that neratinib diminished GAC cell proliferation along with downregulation of FOXM1 and its targets. Additionally, neratinib induced apoptosis along with upregulation of pro-apoptotic and downregulation of anti-apoptotic genes. Treatment with neratinib attenuated invasive ability of GAC cells as shown by reduced anoikis resistance, downregulation of EMT markers, and reduced width in scratch assay. Our findings indicate that neratinib provides the therapeutic potential in the treatment of GAC.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Neoplasias Gástricas/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Invasividade Neoplásica
14.
Appl Biochem Biotechnol ; 186(1): 85-108, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29508211

RESUMO

Targeting ErbB family of receptors is an important therapeutic option, because of its essential role in the broad spectrum of human cancers, including non-small cell lung cancer (NSCLC). Therefore, in the present work, considerable effort has been made to develop an inhibitor against HER family proteins, by combining the use of pharmacophore modelling, docking scoring functions, and ADME property analysis. Initially, a five-point pharmacophore model was developed using known HER family inhibitors. The generated model was then used as a query to screen a total of 468,880 compounds of three databases namely ZINC, ASINEX, and DrugBank. Subsequently, docking analysis was carried out to obtain hit molecules that could inhibit the HER receptors. Further, analysis of GLIDE scores and ADME properties resulted in one hit namely BAS01025917 with higher glide scores, increased CNS involvement, and good pharmaceutically relevant properties than reference ligand, afatinib. Furthermore, the inhibitory activity of the lead compounds was validated by performing molecular dynamic simulations. Of note, BAS01025917 was found to possess scaffolds with a broad spectrum of antitumor activity. We believe that this novel hit molecule can be further exploited for the development of a pan-HER inhibitor with low toxicity and greater potential.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptor ErbB-2/metabolismo , Antineoplásicos/química , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química
15.
Cancers (Basel) ; 10(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241301

RESUMO

Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.

16.
Oncotarget ; 9(28): 19662-19674, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29731973

RESUMO

EGFR and HER-2 are important targets but none of the monoclonal antibodies or small molecule tyrosine kinase inhibitors specific for the HER members has been approved for the treatment of patients with ovarian cancers. In some studies, co-expression of other growth factor receptors has been associated with resistance to therapy with the HER inhibitors. The aim of the present study was to determine the relative expression, cellular location, and prognostic significance of HER-family members, the EGFR mutant (EGFRvIII) c-MET, IGF-1R and the cancer stem cell biomarker CD44 in 60 patients with FIGO stage III and IV ovarian cancer. At cut off >5% of tumour cells with positive staining, 62%, 59%, 65% and 45% of the cases were EGFR, HER-2, HER-3 and HER-4 positive, and 3%, 22% and 48.3% of the cases were positive for EGFRvIII, c-MET, and CD44 respectively. Interestingly, 23% co-expressed all four members of the HER family. On univariate analysis, only EGFR staining at >50% of tumour cells (HR = 3.57, p = 0.038) and CD44 staining at 3+ intensity (HR = 7.99, p = 0.004) were associated with a poorer overall survival. EGFR expression (HR = 2.83, p = 0.019) and its co-expression with HER-2, HER-3, HER-2/HER-3, and c-MET were all associated with poorer disease-free survival. Our results suggest co-expression of the HER-family members is common in Stage III and IV ovarian cancer patients. Further studies on the prognostic significance and predictive value of all HER family member proteins for the response to treatment with various forms of the HER inhibitors are warranted.

18.
Mol Ther Nucleic Acids ; 10: 317-330, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499944

RESUMO

HER family members are interdependent and functionally compensatory. Simultaneously targeting EGFR/HER2/HER3 by antibody combinations has demonstrated superior treatment efficacy over targeting one HER receptor. However, antibody combinations have their limitations, with high immunogenicity and high cost. In this study, we have developed a three-in-one nucleic acid aptamer-small interfering RNA (siRNA) chimera, which targets EGFR/HER2/HER3 in one molecule. This inhibitory molecule was constructed such that a single EGFR siRNA is positioned between the HER2 and HER3 aptamers to create a HER2 aptamer-EGFR siRNA-HER3 aptamer chimera (H2EH3). EGFR siRNA was delivered into HER2-expressing cells by HER2/HER3 aptamer-induced internalization. HER2/HER3 aptamers act as antagonist molecules for blocking HER2 and HER3 signaling pathways and also as tumor-targeting agents for siRNA delivery. H2EH3 enables down-modulation of the expression of all three receptors, thereby triggering cell apoptosis. In breast cancer xenograft models, H2EH3 is able to bind to breast tumors with high specificity and significantly inhibits tumor growth via either systemic or intratumoral administration. Owing to low immunogenicity, ease of production, and high thermostability, H2EH3 is a promising therapeutic to supplement current single HER inhibitors and may act as a treatment for HER2+ breast cancer with intrinsic or acquired resistance to current drugs.

19.
J Hematol Oncol ; 10(1): 155, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931402

RESUMO

Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T), bispecific antibody (BsAb) is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides) and targets (e.g., tumor cells) but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs) and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER) family, carcinoembryonic antigen (CEA), and prostate-specific membrane antigen (PSMA) related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.


Assuntos
Imunoterapia/métodos , Neoplasias/genética , Anticorpos Biespecíficos/uso terapêutico , Humanos , Neoplasias/metabolismo
20.
J Mol Model ; 24(1): 30, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29280017

RESUMO

The family of human epidermal growth factor receptors (HER) is involved in tumor cell growth. Homodimerization and heterodimerization of the HER family are important for activation of these receptors. The structures of homodimer conformation are well characterized, while the structures of heterodimer conformations, especially between HER1 and HER2, are not completely understood. In this study, two models of possible asymmetric HER1/HER2 kinase domains were built. Molecular dynamics simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) methods were applied to examine the possibility of these two-heterodimer interactions. From our results, it could be concluded that the HER2 kinase domain prefers to serve as the receiver rather than the activator. Key binding residues of this dimer complex at N lobe of HER2 is ALA683 and at C lobe of HER1 are GLU914, GLU917, and ASP930. This study will be useful in allowing us to predict and be able to control activity of this enzyme in disease in the future. Graphical abstract A model of the asymmetric dimer of HER1-HER2 heterodimer with key intereaction residues in (a) HER1A and (b) HER2R by molecular dynamic simulation.


Assuntos
Receptores ErbB/metabolismo , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptor ErbB-2/metabolismo , Biologia Computacional , Humanos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa