Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38108472

RESUMO

Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.


Assuntos
Dente , Animais , Camundongos , Dente Molar , Morfogênese/genética , Odontogênese/genética , Raiz Dentária
2.
Proc Natl Acad Sci U S A ; 120(1): e2208623119, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584300

RESUMO

Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with ß-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.


Assuntos
Ouriços , Via de Sinalização Wnt , Humanos , Camundongos , Animais , Ouriços/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Diferenciação Celular/genética , Proteínas/metabolismo , Condrócitos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(32): e2304385120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523566

RESUMO

Drosophila Smaug and its orthologs comprise a family of mRNA repressor proteins that exhibit various functions during animal development. Smaug proteins contain a characteristic RNA-binding sterile-α motif (SAM) domain and a conserved but uncharacterized N-terminal domain (NTD). Here, we resolved the crystal structure of the NTD of the human SAM domain-containing protein 4A (SAMD4A, a.k.a. Smaug1) to 1.6 Å resolution, which revealed its composition of a homodimerization D subdomain and a subdomain with similarity to a pseudo-HEAT-repeat analogous topology (PHAT) domain. Furthermore, we show that Drosophila Smaug directly interacts with the Drosophila germline inducer Oskar and with the Hedgehog signaling transducer Smoothened through its NTD. We determined the crystal structure of the NTD of Smaug in complex with a Smoothened α-helical peptide to 2.0 Å resolution. The peptide binds within a groove that is formed by both the D and PHAT subdomains. Structural modeling supported by experimental data suggested that an α-helix within the disordered region of Oskar binds to the NTD of Smaug in a mode similar to Smoothened. Together, our data uncover the NTD of Smaug as a peptide-binding domain.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Ligação a RNA , Proteínas Repressoras , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores Acoplados a Proteínas G
4.
Dev Biol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029571

RESUMO

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.

5.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355083

RESUMO

Morphogens of the Hh family trigger gene expression changes in receiving cells in a concentration-dependent manner to regulate their identity, proliferation, death or metabolism, depending on the tissue or organ. This variety of responses relies on a conserved signaling pathway. Its logic includes a negative-feedback loop involving the Hh receptor Ptc. Here, using experiments and computational models we study and compare the different spatial signaling profiles downstream of Hh in several developing Drosophila organs. We show that the spatial distributions of Ptc and the activator transcription factor CiA in wing, antenna and ocellus show similar features, but are markedly different from that in the compound eye. We propose that these two profile types represent two time points along the signaling dynamics, and that the interplay between the spatial displacement of the Hh source in the compound eye and the negative-feedback loop maintains the receiving cells effectively in an earlier stage of signaling. These results show how the interaction between spatial and temporal dynamics of signaling and differentiation processes may contribute to the informational versatility of the conserved Hh signaling pathway.


Assuntos
Drosophila , Proteínas Hedgehog , Transdução de Sinais , Drosophila/embriologia , Animais , Proteínas Hedgehog/fisiologia , Asas de Animais/embriologia , Olho Composto de Artrópodes/embriologia
6.
Dev Biol ; 493: 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265686

RESUMO

Hedgehog (HH) signaling is a major driver of tissue patterning during embryonic development through the regulation of a multitude of cell behaviors including cell fate specification, proliferation, migration, and survival. HH ligands signal through the canonical receptor PTCH1 and three co-receptors, GAS1, CDON and BOC. While previous studies demonstrated an overlapping and collective requirement for these co-receptors in early HH-dependent processes, the early embryonic lethality of Gas1;Cdon;Boc mutants precluded an assessment of their collective contribution to later HH-dependent signaling events. Specifically, a collective role for these co-receptors during limb development has yet to be explored. Here, we investigate the combined contribution of these co-receptors to digit specification, limb patterning and long bone growth through limb-specific conditional deletion of Cdon in a Gas1;Boc null background. Combined deletion of Gas1, Cdon and Boc in the limb results in digit loss as well as defects in limb outgrowth and long bone patterning. Taken together, these data demonstrate that GAS1, CDON and BOC are collectively required for HH-dependent patterning and growth of the developing limb.


Assuntos
Moléculas de Adesão Celular , Proteínas Hedgehog , Receptores de Superfície Celular , Feminino , Gravidez , Proteínas de Transporte , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/metabolismo , Animais
7.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698766

RESUMO

Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Hedgehog/metabolismo , Prosencéfalo/metabolismo , Receptor Notch1/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Diferenciação Celular , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Humanos , Camundongos , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor Patched-1/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Transdução de Sinais
8.
Plant Cell Environ ; 47(6): 2192-2205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481108

RESUMO

Physiological water stress induced by low root temperatures might contribute to species-specific climatic limits of tree distribution. We investigated the low temperature sensitivity of root water uptake and transport in seedlings of 16 European tree species which reach their natural upper elevation distribution limits at different distances to the alpine treeline. We used 2H-H2O pulse-labelling to quantify the water uptake and transport velocity from roots to leaves in seedlings exposed to constant 15°C, 7°C or 2°C root temperature, but identical aboveground temperatures between 20°C and 25°C. In all species, low root temperatures reduced the water transport rate, accompanied by reduced stem water potentials and stomatal conductance. At 7°C root temperature, the relative water uptake rates among species correlated positively with the species-specific upper elevation limits, indicating an increasingly higher sensitivity to lower root zone temperatures, the lower a species' natural elevational distribution limit. Conversely, 2°C root temperature severely inhibited water uptake in all species, irrespective of the species' thermal elevational limits. We conclude that low temperature-induced hydraulic constraints contribute to the cold distribution limits of temperate tree species and are a potential physiological cause behind the low temperature limits of plant growth in general.


Assuntos
Temperatura Baixa , Raízes de Plantas , Especificidade da Espécie , Árvores , Água , Água/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Altitude , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Plântula/fisiologia , Plântula/metabolismo , Transporte Biológico , Estômatos de Plantas/fisiologia
9.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892279

RESUMO

Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.


Assuntos
Epiderme , Regulação Neoplásica da Expressão Gênica , Queratina-16 , Melanoma , Proteína A7 Ligante de Cálcio S100 , Neoplasias Cutâneas , Proteína GLI1 em Dedos de Zinco , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Proteína A7 Ligante de Cálcio S100/metabolismo , Proteína A7 Ligante de Cálcio S100/genética , Epiderme/metabolismo , Epiderme/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Linhagem Celular Tumoral , Queratina-16/metabolismo , Queratina-16/genética , Regulação para Cima , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Idoso
10.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257264

RESUMO

A green method to synthesize cyclobutane derivatives has been developed over the past three decades in the form of solid-state [2+2] photochemical reactions. These solid-state reactions also play a major role in the structural transformation of hybrid materials. In this regard, crystal engineering has played a major role in designing photoreactive molecular systems. Here, we report three novel binuclear Cd(II) complexes with the molecular formula [Cd2(4spy)4L4], where 4spy = 4-styryl pyridine and L = p-toluate (1); 4-fluorobenzoate (2); and 3-fluorobenzoate (3). Although three different benzoates are used, all three complexes are isostructural, as corroborated through SCXRD experiments. Structural analysis also helped in identifying two potential photoreactions. These are both intra- and intermolecular in nature and are driven by the head-to-head (HH) and head-to-tail (HT) alignment of 4spy linkers within these metal complexes. 1H NMR spectroscopy studies showed evidence of a quantitative head-to-head photoreaction in all these three complexes, and SCXRD analysis of the recrystallization of the photoproducts also provided confirmation. TGA studies of these photoreactive complexes showed an increase in the thermal stability of the complexes due to the solid-state photoreaction. Photoluminescence studies of these complexes have been conducted, showing a blue shift in emission spectra across all three cases after the photoreaction.

11.
Electromagn Biol Med ; 43(3): 187-203, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38990565

RESUMO

To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.


In our research, we've introduced an enhanced electrical model for living cells. This model simplifies cell behavior using only basic electrical components like resistors and capacitors. It's designed to mimic the real electrical properties of cells, particularly the cell membrane, which can change in response to electricity at different frequencies, ranging from 1 kHz to 100 MHz. This frequency range is essential for studying processes like electroporation, a technique used in various medical applications.Our model is represented in a two-dimensional structure, making it a handy tool for identifying transmembrane potential distributions, a critical factor in electroporation procedures. This means we can better understand how cells react to electrical impulses, which is crucial for improving electroporation techniques.Additionally, we've extended our model to include muscle cells by incorporating the Hodgkin-Huxley model, a well-established model for understanding electrical behavior in muscle cells. This allows us to study how muscles contract when exposed to different electrical pulses, a common side effect of electroporation procedures. By examining various pulse characteristics, we can determine which ones are best for minimizing muscle contractions during electroporation.In summary, our research has led to the development of a versatile electrical model for living cells. It not only helps us understand how cells respond to electricity in the context of electroporation but also provides insights into muscle contractions and how to optimize electrical pulses for medical treatments.


Assuntos
Potenciais de Ação , Modelos Biológicos , Eletroporação , Sobrevivência Celular/efeitos da radiação , Eletricidade , Humanos
12.
Mol Biol (Mosk) ; 58(1): 157-159, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38943587

RESUMO

Streptococcus pyogenes Cas9 (SpCas9) is the most popular tool in gene editing; however, off-target mutagenesis is one of the biggest impediments in its application. In our previous study, we proposed the HH theory, which states that sgRNA/DNA hybrid (hybrid) extrusion-induced enhancement of hydrophobic interactions between the hybrid and REC3/HNH is a key factor in cleavage initiation. Based on the HH theory, we analyzed the interactions between the REC3 domain and hybrid and obtained 8 mutant sites. We designed 8 SpCas9 variants (V1-V8), used digital droplet PCR to assess SpCas9-induced DNA indels in human cells, and developed high-fidelity variants. Thus, the HH theory may be employed to further optimize SpCas9-mediated genome editing systems, and the resultant V3, V6, V7, and V8 SpCas9 variants may be valuable for applications requiring high-precision genome editing.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Streptococcus pyogenes , Humanos , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/enzimologia , Células HEK293 , Mutação INDEL , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , DNA/genética , DNA/metabolismo , DNA/química
13.
Biochem Cell Biol ; 101(4): 284-293, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821837

RESUMO

Studies in the past decade have shown that lipid droplets stored in liver cells under starvation are encapsulated by autophagosomes and fused to lysosomes via the endocytic system. Autophagy responds to a variety of environmental factors inside and outside the cell, so it has a complex signal regulation network. To this end, we first explored the role of Hedgehog (Hh) in autophagy and lipid metabolism. Treatment of normal mouse liver cells with SAG and GDC-0449 revealed elevated phosphorylation of AMP-activated protein kinase (AMPK) and increased lipidation of LC3. SAG, and GDC-0449 were agonist and antagonist of Smoothened (Smo) in canonical Hh pathway, respectively, but they played a consistent role in the regulation of autophagy in hepatocytes. Moreover, SAG and GDC-0449 did not affect the expression of glioma-associated oncogene (Gli1) and patched 1, suggesting the absence of canonical Hh signaling in hepatocytes. We further knocked down the Smo and found that the effects of SAG and GDC-0449 disappeared, indicating that the non-canonical Smo pathway was involved in the regulation of autophagy in hepatocytes. In addition, SAG and GDC-0449 promoted lipid degradation and inhibited lipid production signals. Knockdown of Smo slowed down the rate of lipid degradation rather than Sufu or Gli1, indicating that Hh signaling regulated the lipid metabolism via Smo. In summary, activates AMPK via Smo to promote autophagy and lipid degradation.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Hedgehog , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Hepatócitos/metabolismo , Autofagia , Lipídeos , Receptores Acoplados a Proteínas G/metabolismo
14.
Development ; 147(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31826864

RESUMO

Cilia rotation-driven nodal flow is crucial for the left-right (L-R) break in symmetry in most vertebrates. However, the mechanism by which the flow signal is translated to asymmetric gene expression has been insufficiently addressed. Here, we show that Hedgehog (Hh) signalling is asymmetrically activated (L

Assuntos
Cílios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Anfioxos/embriologia , Animais , Evolução Biológica , Padronização Corporal , Embrião não Mamífero/fisiologia , Embrião não Mamífero/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Anfioxos/genética , Anfioxos/metabolismo , Anfioxos/ultraestrutura
15.
J Med Virol ; 95(12): e29275, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054556

RESUMO

HH-120, an IgM-like angiotensin converting enzyme 2 (ACE2) fusion protein, has been developed as a nasal spray against Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently undergoing human trials. HH-120 nasal spray was assessed for postexposure prophylaxis (PEP) in two investigator-initiated (NS01 and NS02) trials with different risk levels of SARS-CoV-2 exposure. NS01 enrolled family caregiver participants who had continuous contacts with laboratory-confirmed index cases; NS02 enrolled participants who had general contacts (Part 1) or close contacts (Part 2) with index cases. The primary endpoints were safety and laboratory-confirmed and/or symptomatic SARS-CoV-2 infection. In NS01 trial (14 participants), the SARS-CoV-2 infection rates were 25% in the HH-120 group and 83.3% in the external control group (relative risk reduction [RRR]: 70.0%). In NS02-Part 1 (193 participants), the infection rates were 4% (HH-120) versus 11.3% (placebo), symptomatic infection rates were 0.8% versus 3.5%, hence with a RRR of 64.6% and 77.1%, respectively. In Part 2 (76 participants), the infection rates were 17.1% (HH-120) versus 30.4% (placebo), symptomatic infection rates were 7.5% versus 27.3%, with a RRR of 43.8% and 72.5%, respectively. No HH-120-related serious adverse effects were observed. The HH-120 nasal spray used as PEP was safe and effective in preventing laboratory-confirmed and symptomatic SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Proteínas Recombinantes de Fusão , Humanos , Enzima de Conversão de Angiotensina 2/uso terapêutico , COVID-19/prevenção & controle , Imunoglobulina M , Sprays Nasais , SARS-CoV-2 , Proteínas Recombinantes de Fusão/uso terapêutico , Profilaxia Pós-Exposição
16.
J Med Virol ; 95(5): e28805, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227062

RESUMO

HH-120, a recently developed IgM-like ACE2 fusion protein with broad-spectrum neutralizing activity against all ACE2-utilizing coronaviruses, has been developed as a nasal spray for use as an early treatment agent to reduce disease progression and airborne transmission. The objective of this study was to evaluate the safety and efficacy of the HH-120 nasal spray in SARS-CoV-2-infected subjects. Eligible symptomatic or asymptomatic SARS-CoV-2-infected participants were enrolled in a single-arm trial to receive the HH-120 nasal spray for no longer than 6 days or until viral clearance at a single hospital between August 3 and October 7, 2022. An external control was built from real-world data of SARS-CoV-2-infected subjects contemporaneously hospitalized in the same hospital using a propensity score matching (PSM) method. After PSM, 65 participants in the HH-120 group and 103 subjects with comparable baseline characteristics in the external control group were identified. The viral clearance time was significantly shorter in participants receiving the HH-120 nasal spray than that in subjects of the control group (median 8 days vs. 10 days, p < 0.001); the difference was more prominent in those subgroup subjects with higher baseline viral load (median 7.5 days vs. 10.5 days, p < 0.001). The incidence of treatment-emergent adverse events and treatment-related adverse events of HH-120 group were 35.1% (27/77) and 3.9% (3/77), respectively. All the adverse events observed were mild, being of CTCAE grade 1 or 2, and transient. The HH-120 nasal spray showed a favorable safety profile and promising antiviral efficacy in SARS-CoV-2-infected subjects. The results from this study warrant further assessment of the efficacy and safety of the HH-120 nasal spray in large-scale randomized controlled clinical trials.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Sprays Nasais , SARS-CoV-2 , Estudos de Coortes , Pontuação de Propensão , Imunoglobulina M
17.
Cell Commun Signal ; 21(1): 313, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919751

RESUMO

The mutation of MET plays a crucial role in the initiation of cancer, while the Hedgehog (Hh) pathway also plays a significant role in cell differentiation and the maintenance of tumor stem cells. Conventional chemotherapy drugs are primarily designed to target the majority of cell populations within tumors rather than tumor stem cells. Consequently, after a brief period of remission, tumors often relapse. Moreover, the exclusive targeting of tumor stemness cell disregards the potential for other tumor cells to regain stemness and acquire drug resistance. As a result, current drugs that solely target the HGF/c-MET axis and the Hh pathway demonstrate only moderate efficacy in specific types of cancer. Mounting evidence indicates that these two pathways not only play important roles in cancer but also exert significant influence on the development of resistance to single-target therapies through the secretion of their own ligands. In this comprehensive review, we analyze and compare the potential impact of the Hh pathway on the tumor microenvironment (TME) in HGF/c-MET-driven tumor models, as well as the interplay between different cell types. Additionally, we further substantiate the potential and necessity of dual-pathway combination therapy as a critical target in MET addicted cancer treatment. Video Abstract.


Assuntos
Proteínas Hedgehog , Neoplasias , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Mutação/genética , Microambiente Tumoral
18.
Acta Pharmacol Sin ; 44(10): 2113-2124, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225847

RESUMO

EZH2 has been regarded as an efficient target for diffuse large B-cell lymphoma (DLBCL), but the clinical benefits of EZH2 inhibitors (EZH2i) are limited. To date, only EPZ-6438 has been approved by FDA for the treatment of follicular lymphoma and epithelioid sarcoma. We have discovered a novel EZH1/2 inhibitor HH2853 with a better antitumor effect than EPZ-6438 in preclinical studies. In this study we explored the molecular mechanism underlying the primary resistance to EZH2 inhibitors and sought for combination therapy strategy to overcome it. By analyzing EPZ-6438 and HH2853 response profiling, we found that EZH2 inhibition increased intracellular iron through upregulation of transferrin receptor 1 (TfR-1), ultimately triggered resistance to EZH2i in DLBCL cells. We demonstrated that H3K27ac gain by EZH2i enhanced c-Myc transcription, which contributed to TfR-1 overexpression in insensitive U-2932 and WILL-2 cells. On the other hand, EZH2i impaired the occurrence of ferroptosis by upregulating the heat shock protein family A (Hsp70) member 5 (HSPA5) and stabilizing glutathione peroxidase 4 (GPX4), a ferroptosis suppressor; co-treatment with ferroptosis inducer erastin effectively overrode the resistance of DLBCL to EZH2i in vitro and in vivo. Altogether, this study reveals iron-dependent resistance evoked by EZH2i in DLBCL cells, and suggests that combination with ferroptosis inducer may be a promising therapeutic strategy.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma Difuso de Grandes Células B , Humanos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Homeostase , Linfoma Difuso de Grandes Células B/metabolismo , Receptores da Transferrina/metabolismo , Ferro/metabolismo
19.
Cell Mol Life Sci ; 79(2): 119, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119540

RESUMO

During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.


Assuntos
Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Comunicação Celular , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Morfogênese , Pseudópodes/metabolismo , Transdução de Sinais
20.
Mar Drugs ; 21(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36976237

RESUMO

Fishes are an important component of human nutrition, mainly acting as source of essential fatty acids in the prevention of cardiovascular disorders. The increase in their consumption has led to a growth of fishes waste; therefore, the disposal and recycling of waste has become a key issue to address, in accordance with circular economy principles. The Moroccan Hypophthalmichthys molitrix and Cyprinus carpio fishes, living in freshwater and marine environments, were collected at mature and immature stages. The fatty acid (FA) profiles of liver and ovary tissues were investigated by GC-MS and compared with edible fillet tissues. The gonadosomatic index, the hypocholesterolemic/hypercholesterolemic ratio, and the atherogenicity and thrombogenicity indexes were measured. Polyunsaturated fatty acids were found to be abundant in the mature ovary and fillet of both species, with a polyunsaturated fatty acids/saturated fatty acids ratio ranging from 0.40 to 1.06 and a monounsaturated fatty acids/polyunsaturated fatty acids ratio between 0.64 and 1.84. Saturated fatty acids were found to be highly abundant in the liver and gonads of both species (range 30-54%), as well as monounsaturated fatty acids (range 35-58%). The results suggested that the exploitation of fish wastes, such as the liver and ovary, may represent a sustainable strategy for the achievement of high value-added molecules with nutraceutical potential.


Assuntos
Carpas , Ácidos Graxos , Humanos , Animais , Feminino , Peixes , Ácidos Graxos Insaturados , Gônadas , Fígado , Ácidos Graxos Monoinsaturados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa