Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibodies (Basel) ; 11(3)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36134954

RESUMO

Cell-surface HLA-I molecules consisting of ß2-microglobulin (ß2m) associated heavy chains (HCs), referred to as Face-1, primarily present peptides to CD8+ T-cells. HCs consist of three α-domains, with selected amino acid sequences shared by all alleles of all six isoforms. The cell-surface HLA undergoes changes upon activation by pathological conditions with the expression of ß2m-free HCs (Face-2) resulting in exposure of ß2m-masked sequences shared by almost all alleles and the generation of HLA-polyreactive antibodies (Abs) against them. Face-2 may homodimerize or heterodimerize with the same (Face-3) or different alleles (Face-4) preventing exposure of shared epitopes. Non-allo immunized males naturally carry HLA-polyreactive Abs. The therapeutic intravenous immunoglobulin (IVIg) purified from plasma of thousands of donors contains HLA-polyreactive Abs, admixed with non-HLA Abs. Purified HLA-polyreactive monoclonal Abs (TFL-006/007) generated in mice after immunizing with Face-2 are documented to be immunoregulatory by suppressing or activating different human lymphocytes, much better than IVIg. Our objectives are (a) to elucidate the complexity of the HLA-I structural variants, and their Abs that bind to both shared and uncommon epitopes on different variants, and (b) to examine the roles of those Abs against HLA-variants in maintaining immune homeostasis. These may enable the development of personalized therapeutic strategies for various pathological conditions.

2.
Front Immunol ; 13: 822353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432337

RESUMO

Despite significant improvement in the rates of acute allograft rejection, proportionate improvements in kidney allograft longevity have not been realized, and are a source of intense research efforts. Emerging translational data and natural history studies suggest a role for anti-donor immune mechanisms in a majority of cases of allograft loss without patient death, even when overt evidence of acute rejection is not identified. At the level of the donor and recipient genome, differences in highly polymorphic HLA genes are routinely evaluated between donor and recipient pairs as part of organ allocation process, and utilized for patient-tailored induction and maintenance immunosuppression. However, a growing body of data have characterized specific variants in donor and recipient genes, outside of HLA loci, that induce phenotypic changes in donor organs or the recipient immune system, impacting transplant outcomes. Newer mechanisms for "mismatches" in these non-HLA loci have also been proposed during donor-recipient genome interactions with transplantation. Here, we review important recent data evaluating the role of non-HLA genetic loci and genome-wide donor-recipient mismatches in kidney allograft outcomes.


Assuntos
Transplante de Rim , Aloenxertos , Rejeição de Enxerto/genética , Sobrevivência de Enxerto/genética , Antígenos HLA/genética , Humanos , Rim , Transplante de Rim/efeitos adversos
3.
HLA ; 99(4): 313-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073457

RESUMO

Accurate and full-length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest-matched HLA allele among the known alleles in IPD-IMGT/HLA Database. These database-matching approaches have demonstrated very high performance when typing well characterized HLA alleles. However, as they rely on the completeness of the HLA database, they are not optimal for detecting novel or less well characterized alleles. Furthermore, the database-matching approaches are also not adequate in the context of cancer, where a comprehensive characterization of somatic HLA variation and expression patterns of a tumor's HLA locus may guide therapy and clinical outcome, because of the pivotal role HLA alleles play in tumor antigen recognition and immune escape. Here, we describe a personalized HLA typing approach applied to WES data that leverages the strengths of database-matching approaches while simultaneously allowing for the discovery of novel HLA alleles and tumor-specific HLA variants, through the systematic integration of germline and somatic variant calling. We applied this approach on WES from 10 metastatic melanoma patients and validated the HLA typing results using HLA targeted NGS sequencing from patients where at least one HLA germline candidate was detected on Class I HLA. Targeted NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In total, five out of the six detected HLA germline variants were because of Class I ambiguities at the third or fourth fields, and their detection recovered the correct HLA allele genotype. The sixth germline variant let to the formal discovery of a novel Class I allele. Finally, we demonstrated a substantially improved somatic variant detection accuracy in HLA alleles with a 91% of success rate in simulated experiments. The approach described here may allow the field to genotype more accurately using WES data, leading to the discovery of novel HLA alleles and help characterize the relationship between somatic variation in the HLA region and immunosurveillance.


Assuntos
Antígenos HLA , Neoplasias , Alelos , Genótipo , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/métodos , Humanos , Neoplasias/genética , Análise de Sequência de DNA
4.
Front Endocrinol (Lausanne) ; 12: 761077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887833

RESUMO

Background: Approximately half of patients diagnosed with Graves' disease (GD) relapse within two years of thyreostatic drug withdrawal. It is then necessary to decide whether to reintroduce conservative treatment that can have serious side effects, or to choose a radical approach. Familial forms of GD indicate a significant genetic component. Our aim was to evaluate the practical benefits of HLA and PTPN22 genetic testing for the assessment of disease recurrence risk in the Czech population. Methods: In 206 patients with GD, exon 2 in the HLA genes DRB1, DQA1, DQB1 and rs2476601 in the gene PTPN22 were sequenced. Results: The risk HLA haplotype DRB1*03-DQA1*05-DQB1*02 was more frequent in our GD patients than in the general European population. During long-term retrospective follow-up (many-year to lifelong perspective), 87 patients relapsed and 26 achieved remission lasting over 2 years indicating a 23% success rate for conservative treatment of the disease. In 93 people, the success of conservative treatment could not be evaluated (thyroidectomy immediately after the first attack or ongoing antithyroid therapy). Of the examined genes, the HLA-DQA1*05 variant reached statistical significance in terms of the ability to predict relapse (p=0.03). Combinations with either both other HLA risk genes forming the risk haplotype DRB1*03-DQA1*05-DQB1*02 or with the PTPN22 SNP did not improve the predictive value. Conclusion: the DQA1*05 variant may be a useful prognostic marker in patients with an unclear choice of treatment strategy.


Assuntos
Doença de Graves/genética , Antígenos de Histocompatibilidade Classe I/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Adulto , Alelos , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Humanos , Masculino , Recidiva , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa