Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 674, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972970

RESUMO

BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.


Assuntos
Consórcios Microbianos , Poríferos , Simbiose , Transcriptoma , Simbiose/genética , Poríferos/microbiologia , Poríferos/genética , Animais , Consórcios Microbianos/genética , Perfilação da Expressão Gênica , Mar Mediterrâneo
2.
BMC Plant Biol ; 24(1): 484, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822228

RESUMO

Heavy-metal ATPases (HMAs) play a vital role in plants, helping to transport heavy metal ions across cell membranes.However, insufficient data exists concerning HMAs genes within the Arecaceae family.In this study, 12 AcHMA genes were identified within the genome of Areca catechu, grouped into two main clusters based on their phylogenetic relationships.Genomic distribution analysis reveals that the AcHMA genes were unevenly distributed across six chromosomes. We further analyzed their physicochemical properties, collinearity, and gene structure.Furthermore, RNA-seq data analysis exhibited varied expressions in different tissues of A. catechu and found that AcHMA1, AcHMA2, and AcHMA7 were highly expressed in roots, leaves, pericarp, and male/female flowers. A total of six AcHMA candidate genes were selected based on gene expression patterns, and their expression in the roots and leaves was determined using RT-qPCR under heavy metal stress. Results showed that the expression levels of AcHMA1 and AcHMA3 genes were significantly up-regulated under Cd2 + and Zn2 + stress. Similarly, in response to Cu2+, the AcHMA5 and AcHMA8 revealed the highest expression in roots and leaves, respectively. In conclusion, this study will offer a foundation for exploring the role of the HMAs gene family in dealing with heavy metal stress conditions in A. catechu.


Assuntos
Adenosina Trifosfatases , Metais Pesados , Metais Pesados/toxicidade , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Hum Genomics ; 17(1): 37, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098643

RESUMO

Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.


Assuntos
Metilação de DNA , Síndromes Mielodisplásicas , Humanos , Metilação de DNA/genética , Epigenômica , Epigênese Genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Progressão da Doença , Ilhas de CpG/genética , Proteínas de Ligação a DNA/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-39089444

RESUMO

There is a consensus that electroneutral Na+/H+ exchangers (NHEs) are important in branchial Na+ uptake in freshwater fish. There is also widespread belief, based on mammalian data, that EIPA [5-(N-ethyl-N-isopropyl)-amiloride]], and HMA [5-(N,N-hexamethylene)-amiloride)] are more potent and specific in blocking Na+ uptake than amiloride. We evaluated this idea by testing the three drugs at 10-7 to 10-4 M, i.e. 0.1 to 100 µM in two model species, rainbow trout (Oncorhynchus mykiss) and goldfish (Carassius auratus), using 22Na+ to measure unidirectional Na+ influx and efflux rates. In both species, the potency order for inhibiting unidirectional Na+ influx was HMA > amiloride > EIPA (IC50 values in the 10-70 µM range), very different from in mammals. At 100 µM, all three drugs inhibited Na+ influx by >90% in both species, except for amiloride in goldfish (65%). However, at 60-100 µM, all three drugs also stimulated unidirectional Na+ efflux rates, indicating non-specific effects. In trout, HMA and EIPA caused significant increases (2.1- to 2.3-fold) in efflux rates, whereas in goldfish, significant efflux elevations were greater (3.1- to 7.2-fold) with all three drugs. We conclude that the inhibitory potency profile established in mammals does not apply to the NHEs in fish gills, that non-specific effects on Na+ efflux rates are a serious concern, and that EIPA and HMA offer no clear benefits in terms of potency or specificity. Considering its much lower cost, we recommend amiloride as the drug of choice for in vivo experiments on freshwater fishes.

5.
Int J Phytoremediation ; 26(10): 1643-1654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644603

RESUMO

One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.


The current study confirms and provides new insights into the low Cd and Zn concentration responses of two cultivars of Helianthus annuus as potential HM phytoremediators. HMA3 and HMA4 mediated both root sequestration and reduced root-to-shoot translocation rates. Moreover, high CAT and POX activities may reduce oxidative damage and enhance plant tolerance. The V120 showed higher levels of Cd accumulation in its roots and could be a promising cultivar for the phytoremediation of this heavy metal. This work recalls that Cd tolerance is a trait that may vary among cultivars of the same species and should be taken into consideration in the phytomanagement of heavy metals in contaminated soils.


Assuntos
Biodegradação Ambiental , Cádmio , Helianthus , Poluentes do Solo , Zinco , Helianthus/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo , Egito , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
6.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686302

RESUMO

The pollution of heavy metals is extremely serious in China, including zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Heavy-metal-transporting ATPase (HMA) belongs to a subfamily of the P-ATPase family, which absorbs and transports Zn, Cu, Pb, and Cd in plants. Here, we describe a ZmHMA-encoding HMA family protein that positively regulates Cd and Zn tolerance. The real-time fluorescence quantification (RT-PCR) results revealed that ZmHMA3 had a high expression in B73, and the expression of ZmHMA3 was sensitive to Cd in yeast cells, which was related to Cd accumulation in yeast. Additionally, the Arabidopsis thaliana homologous mutants of AtHMA2 showed Cd sensitivity compared with WT. The overexpressing ZmHMA3 plants showed higher tolerance under Cd and Zn stresses than the wild type. The overexpression of ZmHMA3 led to higher Cd and Zn accumulation in tissues based on the subcellular distribution analysis. We propose that ZmHMA3 improves maize tolerance to Cd and Zn stresses by absorbing and transporting Cd and Zn ions. This study elucidates the gene function of the ZmHMA3 response to Cd and Zn stress and provides a reference for improving the characteristics of heavy metals enrichment in existing maize varieties and the plant remediation technology of heavy-metal-contaminated soil.


Assuntos
Arabidopsis , Metais Pesados , Zinco , Cádmio/toxicidade , Zea mays/genética , Adenosina Trifosfatases/genética , Chumbo , Saccharomyces cerevisiae , Metais Pesados/toxicidade , Arabidopsis/genética
7.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894919

RESUMO

Fungal effector proteins are important in mediating disease infections in agriculturally important crops. These secreted small proteins are known to interact with their respective host receptor binding partners in the host, either inside the cells or in the apoplastic space, depending on the localisation of the effector proteins. Consequently, it is important to understand the interactions between fungal effector proteins and their target host receptor binding partners, particularly since this can be used for the selection of potential plant resistance or susceptibility-related proteins that can be applied to the breeding of new cultivars with disease resistance. In this study, molecular docking simulations were used to characterise protein-protein interactions between effector and plant receptors. Benchmarking was undertaken using available experimental structures of effector-host receptor complexes to optimise simulation parameters, which were then used to predict the structures and mediating interactions of effector proteins with host receptor binding partners that have not yet been characterised experimentally. Rigid docking was applied for both the so-called bound and unbound docking of MAX effectors with plant HMA domain protein partners. All bound complexes used for benchmarking were correctly predicted, with 84% being ranked as the top docking pose using the ZDOCK scoring function. In the case of unbound complexes, a minimum of 95% of known residues were predicted to be part of the interacting interface on the host receptor binding partner, and at least 87% of known residues were predicted to be part of the interacting interface on the effector protein. Hydrophobic interactions were found to dominate the formation of effector-plant protein complexes. An optimised set of docking parameters based on the use of ZDOCK and ZRANK scoring functions were established to enable the prediction of near-native docking poses involving different binding interfaces on plant HMA domain proteins. Whilst this study was limited by the availability of the experimentally determined complexed structures of effectors and host receptor binding partners, we demonstrated the potential of molecular docking simulations to predict the likely interactions between effectors and their respective host receptor binding partners. This computational approach may accelerate the process of the discovery of putative interacting plant partners of effector proteins and contribute to effector-assisted marker discovery, thereby supporting the breeding of disease-resistant crops.


Assuntos
Proteínas de Transporte , Proteínas de Plantas , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Melhoramento Vegetal , Proteínas Fúngicas/metabolismo , Ligação Proteica , Produtos Agrícolas/metabolismo
8.
Plant Cell Physiol ; 63(5): 713-728, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35312772

RESUMO

Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.


Assuntos
Oryza , Poluentes do Solo , Sorghum , Alelos , Cádmio/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Poluentes do Solo/metabolismo , Sorghum/genética , Sorghum/metabolismo
9.
BMC Microbiol ; 22(1): 174, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799112

RESUMO

BACKGROUND: Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS: This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS: Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION: The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.


Assuntos
Helianthus , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Helianthus/microbiologia , Metais Pesados/análise , Raízes de Plantas , Solo , Poluentes do Solo/análise
10.
Mol Ecol ; 31(19): 4932-4948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881675

RESUMO

Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.


Assuntos
Biodiversidade , Poríferos , Animais , Bactérias/genética , Clorofila , Humanos , Filogenia , Poríferos/genética , RNA Ribossômico 16S/genética , Água do Mar
11.
Dokl Biochem Biophys ; 505(1): 141-144, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36038678

RESUMO

In two introgressive lines of bread wheat (15-7-1 and 15-7-2), which differ in the allelic status of the Gpc-B1 gene, the expression of the gene encoding the HMA2 transport protein in flag leaves under optimum Zn content in substrate (2 µÐœ) and in its deficiency (0 µÐœ) was investigated. This is the first study to show that the plants carrying functional allele of the Gpc-В1 gene (line 15-7-1) have a higher level of TaHMA2 transcripts than the plants with nonfunctional allele of the Gpc-В1 gene (line 15-7-2) both at optimum Zn content in substrate and at its deficiency. Importantly, the high TaHMA2 gene expression did not affect the wheat shoot growth but correlated with a high Zn concentration in the aboveground part of plants. It is assumed that the NAC transcription factor encoded by the Gpc-В1 gene may be involved in the regulation of the ТаНМА2 gene expression.


Assuntos
Adenosina Trifosfatases/metabolismo , Fatores de Transcrição , Triticum , Expressão Gênica , Folhas de Planta , Raízes de Plantas , Triticum/genética , Zinco
12.
Future Oncol ; 17(20): 2563-2571, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33769069

RESUMO

Two oral hypomethylating agents, oral azacitidine (CC-486) and decitabine/cedazuridine (ASTX727), have recently entered the clinical domain. CC-486 has been shown to improve overall survival as maintenance therapy for older patients with acute myeloid leukemia in complete remission, whereas the combination of decitabine with cedazuridine, a cytidine deaminase inhibitor, is indicated for the treatment of adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia with intermediate-1, or higher, International Prognostic Scoring System risk. This article briefly summarizes the clinical development of both drugs, the pivotal studies that led to their approval and some of the issues faced in extending the use of these drugs to other indications.


Lay abstract One of the key challenges in treating acute myeloid leukemia is to prevent relapse after remission has been achieved. This means that developing an effective maintenance treatment is very important. Maintenance treatment is given for a prolonged period and so it needs to be easy to give and well tolerated. Oral azacitidine is an example of this type of treatment and is the first drug that has been shown to improve survival as maintenance therapy for acute myeloid leukemia patients. This article describes the key studies that led to the approval of this important therapy.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Decitabina/administração & dosagem , Aprovação de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Uridina/análogos & derivados , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/farmacocinética , Azacitidina/administração & dosagem , Azacitidina/efeitos adversos , Azacitidina/farmacocinética , Disponibilidade Biológica , Ensaios Clínicos Fase III como Assunto , Metilação de DNA/efeitos dos fármacos , Decitabina/efeitos adversos , Decitabina/farmacocinética , Combinação de Medicamentos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Indução de Remissão/métodos , Uridina/administração & dosagem , Uridina/efeitos adversos , Uridina/farmacocinética
13.
Future Oncol ; 17(36): 5163-5175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636250

RESUMO

Myelodysplastic syndromes are hematological malignancies characterized by ineffective hematopoiesis and a high risk of progression to acute myeloid leukemia. Hypomethylating agents (HMAs), azacitidine and decitabine, are standard of care therapy for higher-risk myelodysplastic syndromes. However, outcomes reported for real-world studies fall short of those achieved in clinical trials. We conducted a targeted literature review exploring real-world utilization, persistence and outcomes with intravenous and subcutaneous HMA therapies to better understand barriers to achieving optimal outcomes in clinical practice. The potential benefits of oral HMA therapy were also explored. Underutilization and poor persistence with HMA therapy are associated with suboptimal outcomes, highlighting the need for approaches to improve utilization and persistence, so that patients achieve the optimum benefit from HMA therapy.


Lay abstract Myelodysplastic syndromes (MDS) are bone marrow disorders affecting the production of blood cells. In some patients, MDS can progress to acute myeloid leukemia (AML), an aggressive blood cancer with poor prognosis. Patients with higher-risk MDS are often treated with a type of chemotherapy called hypomethylating agents (HMAs). Studies conducted in real-world clinical practice have shown HMAs to be less effective than has been found in clinical trials. We reviewed available studies exploring real-world utilization, persistence and outcomes with current HMA therapies to better understand any barriers to patients achieving the best outcomes. Two important factors were found to be the underuse of HMAs and poor persistence with HMA therapy, highlighting the need for approaches to improve HMA utilization and persistence.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Antimetabólitos Antineoplásicos/administração & dosagem , Efeitos Psicossociais da Doença , Fidelidade a Diretrizes , Mau Uso de Serviços de Saúde , Humanos , Guias de Prática Clínica como Assunto , Resultado do Tratamento
14.
Future Oncol ; 17(23): 2989-3005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024158

RESUMO

Elderly and/or unfit patients with acute myeloid leukemia have historically been challenging to manage as they were ineligible for what was considered standard of care treatment with induction chemotherapy. The emergence of venetoclax with hypomethylating agents or low-dose cytarabine has substantially improved outcomes in the frontline setting with manageable toxicity. However, this regimen can be challenging to deliver given its differences from standard intensive chemotherapy. In this review, we summarize the landmark trials that established venetoclax-based combinations as a new standard of care for patients with acute myeloid leukemia not suitable for intense chemotherapy, provide practical clinical pearls for managing patients on these therapies, and offer a brief overview of modifications to these regimens under development to improve their efficacy and/or applicability.


Lay abstract Older and/or unfit patients with acute myeloid leukemia (AML) have historically had bad outcomes with standard therapies and an overall dismal prognosis. The advent of venetoclax (VEN)-based regimens has led to significantly improved responses for patients with untreated AML with an acceptable safety profile. However, delivering these therapies are associated with their own unique challenges. In this review, we summarize the key trials that demonstrated the success of VEN-based combinations in this particular AML population, provide practical considerations for managing patients on these therapies, and discuss ongoing studies to further improve VEN-based therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Indução de Remissão/métodos , Sulfonamidas/uso terapêutico , Ensaios Clínicos como Assunto , Metilação de DNA , Humanos , Guias de Prática Clínica como Assunto , Padrão de Cuidado , Resultado do Tratamento
15.
BMC Genomics ; 21(1): 722, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076828

RESUMO

BACKGROUND: The recent release of the reference genome sequence assembly of flax, a self-pollinated crop with 15 chromosome pairs, into chromosome-scale pseudomolecules enables the characterization of gene families. The ABC transporter and HMA gene families are important in the control of cadmium (Cd) accumulation in crops. To date, the genome-wide analysis of these two gene families has been successfully conducted in some plant species, but no systematic evolutionary analysis is available for the flax genome. RESULTS: Here we describe the ABC transporter and HMA gene families in flax to provide a comprehensive overview of its evolution and some support towards the functional annotation of its members. The 198 ABC transporter and 12 HMA genes identified in the flax genome were classified into eight ABC transporter and four HMA subfamilies based on their phylogenetic analysis and domains' composition. Nine of these genes, i.e., LuABCC9, LuABCC10, LuABCG58, LuABCG59, LuABCG71, LuABCG72, LuABCG73, LuHMA3, and LuHMA4, were orthologous with the Cd associated genes in Arabidopsis, rice and maize. Ten motifs were identified from all ABC transporter and HMA genes. Also, several motifs were conserved among genes of similar length, but each subfamily each had their own motif structures. Both the ABC transporter and HMA gene families were highly conserved among subfamilies of flax and with those of Arabidopsis. While four types of gene duplication were observed at different frequencies, whole-genome or segmental duplications were the most frequent with 162 genes, followed by 29 dispersed, 14 tandem and 4 proximal duplications, suggesting that segmental duplications contributed the most to the expansion of both gene families in flax. The rates of non-synonymous to synonymous (Ka/Ks) mutations of paired duplicated genes were for the most part lower than one, indicative of a predominant purifying selection. Only five pairs of genes clearly exhibited positive selection with a Ka/Ks ratio greater than one. Gene ontology analyses suggested that most flax ABC transporter and HMA genes had a role in ATP binding, transport, catalytic activity, ATPase activity, and metal ion binding. The RNA-Seq analysis of eight different organs demonstrated diversified expression profiling patterns of the genes and revealed their functional or sub-functional conservation and neo-functionalization. CONCLUSION: Characterization of the ABC transporter and HMA gene families will help in the functional analysis of candidate genes in flax and other crop species.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Linho , Metais Pesados , Família Multigênica , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina , Evolução Molecular , Linho/genética , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Filogenia
16.
Ecotoxicol Environ Saf ; 197: 110613, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304923

RESUMO

Cadmium (Cd) contaminated soil has threatened plant growth and human health. Rapeseed (Brassica napus L.), an ideal plant for phytoremediation, is an important source of edible vegetable oil, vegetable, animal fodder, green manure and biodiesel. For safe utilization of Cd polluted soil, physiological, biochemical, and molecular techniques have been used to understand mechanisms of Cd tolerance in B. napus. However, most of these researches have concentrated on vegetative and adult stages, just a few reports focus on the initial growth stage. Here, the partitioning of cadmium, gene expression level and activity of enzymatic antioxidants of H18 (tolerant genotype) and P9 (sensitive genotype) were investigated under 0 and 30 mg/L Cd stress at seedling establishment stage. Results shown that the radicle length of H18 and P9 under Cd stress were decreased by 30.33 (0.01 < P < 0.05) and 88.89% (P < 0.01) respectively. Cd concentration at cotyledon not radicle and hypocotyl in P9 was significantly higher than that in H18. The expression level of BnaHMA4c, which plays a key role in root-to-shoot translocation of Cd, was extremely higher in P9 than in H18 under both normal and Cd stress conditions. We also found that SOD, CAT and POD were more active in responding to Cd stress after 48 h, and the activity of SOD and CAT in H18 were higher than that in P9 at all observed time points. In conclusion, high activity of enzymatic antioxidants at initial Cd stress stage is the main detoxification mechanism in Cd-tolerant rapeseed, while the higher Cd transfer coefficient, driven by higher expression level of BnaHMA4c is the main mechanism for surviving radicle from initial Cd toxicity in Cd-sensitive rapeseed.


Assuntos
Brassica napus/efeitos dos fármacos , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Biodegradação Ambiental , Brassica napus/enzimologia , Brassica napus/crescimento & desenvolvimento , Cádmio/farmacocinética , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Poluentes do Solo/farmacocinética
17.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147699

RESUMO

Microglia-mediated neuroinflammation is one of the key mechanisms involved in acute brain injury and chronic neurodegeneration. This study investigated the inhibitory effects of 2-hydroxy-4-methylbenzoic anhydride (HMA), a novel synthetic derivative of HTB (3-hydroxy-4-trifluoromethylbenzoic acid) on neuroinflammation and underlying mechanisms in activated microglia in vitro and an in vivo mouse model of Parkinson's disease (PD). In vitro studies revealed that HMA significantly inhibited lipopolysaccharide (LPS)-stimulated excessive release of nitric oxide (NO) in a concentration dependent manner. In addition, HMA significantly suppressed both inducible NO synthase and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in LPS-stimulated BV-2 microglia cells. Moreover, HMA significantly inhibited the proinflammatory cytokines such as interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha in LPS-stimulated BV-2 microglial cells. Furthermore, mechanistic studies ensured that the potent anti-neuroinflammatory effects of HMA (0.1, 1.0, and 10 µM) were mediated by phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) in LPS-stimulated BV-2 cells. In vivo evaluations revealed that intraperitoneal administration of potent neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg, four times a 1 day) in mice resulted in activation of microglia in the brain in association with severe behavioral deficits as assessed using a pole test. However, prevention of microglial activation and attenuation of Parkinson's disease (PD)-like behavioral changes was obtained by oral administration of HMA (30 mg/kg) for 14 days. Considering the overall results, our study showed that HMA exhibited strong anti-neuroinflammatory effects at lower concentrations than its parent compound. Further work is warranted in other animal and genetic models of PD for evaluating the efficacy of HMA to develop a potential therapeutic agent in the treatment of microglia-mediated neuroinflammatory disorders, including PD.


Assuntos
Benzoatos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Neurônios/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Administração Oral , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Desenho de Fármacos , Técnicas In Vitro , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Modelos Teóricos , Neuroglia/metabolismo , Óxido Nítrico/metabolismo , Peptídeos/química , Fosforilação , Salicilatos/química , Transdução de Sinais
18.
BMC Genomics ; 20(1): 615, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357934

RESUMO

BACKGROUND: Heavy metal ATPases (HMAs) are responsible for Cd translocation and play a primary role in Cd detoxification in various plant species. However, the characteristics of HMAs and the regulatory mechanisms between HMAs and microRNAs in wheat (Triticum aestivum L) remain unknown. RESULTS: By comparative microRNA and transcriptome analysis, a total three known and 19 novel differentially expressed microRNAs (DEMs) and 1561 differentially expressed genes (DEGs) were found in L17 after Cd treatment. In H17, by contrast, 12 known and 57 novel DEMs, and only 297 Cd-induced DEGs were found. Functional enrichments of DEMs and DEGs indicate how genotype-specific biological processes responded to Cd stress. Processes found to be involved in microRNAs-associated Cd response include: ubiquitin mediated proteolysis, tyrosine metabolism, and carbon fixation pathways and thiamine metabolism. For the mRNA response, categories including terpenoid backbone biosynthesis and phenylalanine metabolism, and photosynthesis - antenna proteins and ABC transporters were enriched. Moreover, we identified 32 TaHMA genes in wheat. Phylogenetic trees, chromosomal locations, conserved motifs and expression levels in different tissues and roots under Cd stress are presented. Finally, we infer a microRNA-TaHMAs expression network, indicating that miRNAs can regulate TaHMAs. CONCLUSION: Our findings suggest that microRNAs play important role in wheat under Cd stress through regulation of targets such as TaHMA2;1. Identification of these targets will be useful for screening and breeding low-Cd accumulation wheat lines.


Assuntos
Cádmio/toxicidade , Genômica , Genótipo , MicroRNAs/genética , Transcriptoma/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/genética , Sequência Conservada/genética , Motivos de Nucleotídeos/genética , Especificidade de Órgãos , RNA Mensageiro/genética , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Triticum/fisiologia
19.
Biochem Biophys Res Commun ; 519(4): 887-893, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31561854

RESUMO

We investigated the effect of the modulation of Na/H exchanger 1 (NHE1) on apoptosis, differentiation, and chemoresistance in acute myeloid leukemia (AML) cells to evaluate the possibility of NHE1 modulation as a novel therapeutic strategy for AML. The pHi of leukemia cell lines except KG1a was higher than that of normal bone marrow mononuclear cells (BM MNCs). Notably, in K562, cytarabine (AraC)-resistant OCI-AML2, and primary leukemia cells, pHi was significantly higher than that of normal BM MNCs. Western blotting and real-time quantitative PCR confirmed that the increased NHE1 expression was responsible for the higher pHi. Specifically, compared to CD34+CD38+ leukemia cells, the mean fluorescence intensity of NHE1 was significantly higher in CD34+CD38- leukemic stem cells. The out of range in pHi by treatment with an NHE inhibitor, the amiloride analogue 5-(N,N-hexamethylene) amiloride (HMA), or an NHE activator, phorbol 12-myristate 13-acetate (PMA), resulted in dose- and time-dependent inhibition of leukemia cell proliferation. PMA induced CD14+ differentiation of leukemia cells, whereas HMA induced cell cycle arrest at the G1 phase. HMA could induce apoptosis of leukemia cells even in AraC-resistant cells and showed an additive effect on apoptosis in AraC-sensitive cells. Our result revealed that AML cells prefer more alkalic intracellular moiety than normal BM MNCs following increased NHE1 expression and that NHE1 modulation can induce apoptosis and differentiation of AML cells. These findings imply that NHE1 is a potential target in cytotoxic or differentiation-induction treatment for AML.


Assuntos
Amilorida/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Acetato de Tetradecanoilforbol/farmacologia , Doença Aguda , Amilorida/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo
20.
BMC Plant Biol ; 19(1): 89, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819104

RESUMO

BACKGROUND: HMA4 transporters are involved in the transport and binding of divalent heavy metals (Cd, Zn, Pb [lead] and Co [cobalt]). In general, as efflux pumps, HMA4 transporters can increase the heavy metal tolerance of yeast and Escherichia coli. Additional research has shown that the C-terminus of HMA4 contains a heavy metal-binding domain and that heterologous expression of a portion of peptides from this C-terminal domain in yeast provides a high level of Cd tolerance and Cd hyperaccumulation. RESULTS: We cloned BjHMA4 from Brassica juncea, and quantitative real-time PCR analysis revealed that BjHMA4 was upregulated by Zn and Cd in the roots, stems and leaves. Overexpression of BjHMA4 dramatically affects Zn/Cd distribution in rice and wheat seedlings. Interestingly, BjHMA4 contains a repeat region named BjHMA4R within the C-terminal region; this repeat region is not far from the last transmembrane domain. We further characterized the detailed function of BjHMA4R via yeast and E. coli experiments. Notably, BjHMA4R greatly and specifically improved Cd tolerance, and BjHMA4R transformants both grew on solid media that contained 500 µM CdCl2 and presented improved Cd accumulation (approximately twice that of wild-type [WT] strains). Additionally, visualization via fluorescence microscopy indicated that BjHMA4R clearly localizes in the cytosol of yeast. Overall, these findings suggest that BjHMA4R specifically improves Cd tolerance and Cd accumulation in yeast by specifically binding Cd2+ in the cytosol under low heavy metal concentrations. Moreover, similar results in E. coli experiments corroborate this postulation. CONCLUSION: BjHMA4R can specifically bind Cd2+ in the cytosol, thereby substantially and specifically improving Cd tolerance and accumulation under low heavy metal concentrations.


Assuntos
Cádmio/metabolismo , Citosol/metabolismo , Metais Pesados/metabolismo , Mostardeira/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa