Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
J Biol Chem ; 300(3): 105674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272234

RESUMO

In voltage-gated Na+ and K+ channels, the hydrophobicity of noncharged residues in the S4 helix has been shown to regulate the S4 movement underlying the process of voltage-sensing domain (VSD) activation. In voltage-gated proton channel Hv1, there is a bulky noncharged tryptophan residue located at the S4 transmembrane segment. This tryptophan remains entirely conserved across all Hv1 members but is not seen in other voltage-gated ion channels, indicating that the tryptophan contributes different roles in VSD activation. The conserved tryptophan of human voltage-gated proton channel Hv1 is Trp207 (W207). Here, we showed that W207 modifies human Hv1 voltage-dependent activation, and small residues replacement at position 207 strongly perturbs Hv1 channel opening and closing, and the size of the side chain instead of the hydrophobic group of W207 regulates the transition between closed and open states of the channel. We conclude that the large side chain of tryptophan controls the energy barrier during the Hv1 VSD transition.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Triptofano , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Triptofano/genética , Triptofano/metabolismo , Domínios Proteicos/genética , Mutação
2.
Proc Natl Acad Sci U S A ; 119(15): e2104453119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377790

RESUMO

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population with high immunosuppressive activity that proliferates in infections, inflammation, and tumor microenvironments. In tumors, MDSC exert immunosuppression mainly by producing reactive oxygen species (ROS), a process triggered by the NADPH oxidase 2 (NOX2) activity. NOX2 is functionally coupled with the Hv1 proton channel in certain immune cells to support sustained free-radical production. However, a functional expression of the Hv1 channel in MDSC has not yet been reported. Here, we demonstrate that mouse MDSC express functional Hv1 proton channel by immunofluorescence microscopy, flow cytometry, and Western blot, besides performing a biophysical characterization of its macroscopic currents via patch-clamp technique. Our results show that the immunosuppression by MDSC is conditional to their ability to decrease the proton concentration elevated by the NOX2 activity, rendering Hv1 a potential drug target for cancer treatment.


Assuntos
Canais Iônicos , Células Supressoras Mieloides , Prótons , Linfócitos T , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941706

RESUMO

The dissipation of acute acid loads by the voltage-gated proton channel (Hv1) relies on regulating the channel's open probability by the voltage and the ΔpH across the membrane (ΔpH = pHex - pHin). Using monomeric Ciona-Hv1, we asked whether ΔpH-dependent gating is produced during the voltage sensor activation or permeation pathway opening. A leftward shift of the conductance-voltage (G-V) curve was produced at higher ΔpH values in the monomeric channel. Next, we measured the voltage sensor pH dependence in the absence of a functional permeation pathway by recording gating currents in the monomeric nonconducting D160N mutant. Increasing the ΔpH leftward shifted the gating charge-voltage (Q-V) curve, demonstrating that the ΔpH-dependent gating in Hv1 arises by modulating its voltage sensor. We fitted our data to a model that explicitly supposes the Hv1 voltage sensor free energy is a function of both the proton chemical and the electrical potential. The parameters obtained showed that around 60% of the free energy stored in the ΔpH is coupled to the Hv1 voltage sensor activation. Our results suggest that the molecular mechanism underlying the Hv1 ΔpH dependence is produced by protons, which alter the free-energy landscape around the voltage sensor domain. We propose that this alteration is produced by accessibility changes of the protons in the Hv1 voltage sensor during activation.


Assuntos
Algoritmos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Modelos Biológicos , Prótons , Sequência de Aminoácidos , Animais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Simulação de Dinâmica Molecular , Mutação , Oócitos/metabolismo , Oócitos/fisiologia , Homologia de Sequência de Aminoácidos , Xenopus laevis
4.
Glia ; 71(10): 2418-2436, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395288

RESUMO

Spinal cord injury (SCI) causes severe functional deficits and neuronal damage, accompanied by intense glial activation. The voltage-gated proton channel Hv1, selectively expressed on microglia, is associated with SCI progression. However, the effect of Hv1 on the phenotypes and functions of reactive astrocytes after SCI remains unclear. Here, we combined Hv1 knockout (Hv1-/- ) mice and T10 spinal cord contusion to investigate the effects of microglial Hv1 on SCI pathophysiology and the phenotypes and functions of reactive astrocytes. After SCI, astrocytes proliferated and activated in the peri-injury area and exhibited an A1-dominant phenotype. Hv1 knockout reduced neurotoxic A1 astrocytes and shifted the dominant phenotype of reactive astrocytes from A1 to A2, enhancing synaptogenesis promotion, phagocytosis, and neurotrophy of astrocytes. Moreover, synaptic and axonal remodeling as well as motor recovery after SCI benefited from the improved astrocytic functions of Hv1 knockout. Furthermore, exogenous and endogenous reactive oxygen species (ROS) in astrocytes after SCI were reduced by Hv1 knockout. Our in vitro results showed that inhibition of ROS reduced the neurotoxic A1 phenotype in primary astrocytes via the STAT3 pathway. Similar to the effect of Hv1 knockout, the application of the ROS scavenger N-acetylcysteine reduced SCI-induced neurotoxic A1 astrocytes in vivo. Based on the in vivo and vitro results, we elucidated that microglial Hv1 knockout promotes synaptic and axonal remodeling in SCI mice by decreasing neurotoxic A1 astrocytes and increasing neuroprotective A2 astrocytes via the ROS/STAT3 pathway. Therefore, the Hv1 proton channel is a promising target for the treatment of SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Astrócitos/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Prótons , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
5.
J Neurochem ; 165(1): 29-54, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36625847

RESUMO

Although the precise mechanisms determining the neurotoxic or neuroprotective activation phenotypes in microglia remain poorly characterized, metabolic changes in these cells appear critical for these processes. As cellular metabolism can be tightly regulated by changes in intracellular pH, we tested whether pharmacological targeting of the microglial voltage-gated proton channel 1 (Hv1), an important regulator of intracellular pH, is critical for activated microglial reprogramming. Using a mouse microglial cell line and mouse primary microglia cultures, either alone, or co-cultured with rat cerebrocortical neurons, we characterized in detail the microglial activation profile in the absence and presence of Hv1 inhibition. We observed that activated microglia neurotoxicity was mainly attributable to the release of tumor necrosis factor alpha, reactive oxygen species, and zinc. Strikingly, pharmacological inhibition of Hv1 largely abrogated inflammatory neurotoxicity not only by reducing the production of cytotoxic mediators but also by promoting neurotrophic molecule production and restraining excessive phagocytic activity. Importantly, the Hv1-sensitive change from a pro-inflammatory to a neuroprotective phenotype was associated with metabolic reprogramming, particularly via a boost in NADH availability and a reduction in lactate. Most critically, Hv1 antagonism not only reduced inflammatory neurotoxicity but also promoted microglia-dependent neuroprotection against a separate excitotoxic injury. Our results strongly suggest that Hv1 blockers may provide an important therapeutic tool against a wide range of inflammatory neurodegenerative disorders.


Assuntos
Ácido Glutâmico , Microglia , Animais , Ratos , Microglia/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Canais Iônicos/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Med ; 29(1): 75, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316799

RESUMO

BACKGROUND: The significant challenge in treating triple-negative breast cancer (TNBC) lies in its high rate of distant metastasis. To address this, inhibiting metastasis formation in TNBC is vital. Rac is a key player in cancer metastasis. Previously, we developed Ehop-016, a Rac inhibitor that successfully reduced tumor growth and metastasis in mice. In this study, we assessed the effectiveness of HV-107, a derivative of Ehop-016, in inhibiting TNBC metastasis at lower doses. METHODS: Rho GTPases activity assays were performed with the use of GST-PAK beads and Rac, Rho, and Cdc42 GLISA. Cell viability was assessed through trypan blue exclusion and MTT assays. Cell cycle analysis was conducted using flow cytometry. To evaluate invading capabilities, transwell assays and invadopodia formation assays were performed. Metastasis formation studies were conducted using a breast cancer xenograft mouse model. RESULTS: HV-107 inhibited Rac activity by 50% in MDA-MB-231 and MDA-MB-468 cells at concentrations of 250-2000 nM, leading to a 90% decrease in invasion and invadopodia activity. Concentrations of 500 nM and above caused dose-dependent reductions in cell viability, resulting in up to 20% cell death after 72 h. Concentrations exceeding 1000 nM upregulated PAK1, PAK2, FAK, Pyk2, Cdc42, and Rho signallings, while Pyk2 was downregulated at 100-500 nM. Through in vitro experiments, optimal concentrations of HV-107 ranging from 250 to 500 nM were identified, effectively inhibiting Rac activity and invasion while minimizing off-target effects. In a breast cancer xenograft model, administration of 5 mg/kg HV-107 (administered intraperitoneally, 5 days a week) reduced Rac activity by 20% in tumors and decreased metastasis by 50% in the lungs and liver. No observed toxicity was noted at the tested doses. CONCLUSION: The findings indicate that HV-107 exhibits promising potential as a therapeutic medication utilizing Rac inhibition mechanisms to address metastasis formation in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinase 2 de Adesão Focal , Sobrevivência Celular , Citometria de Fluxo , Xenoenxertos
7.
Electrophoresis ; 44(9-10): 784-792, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36640139

RESUMO

Sample injection is a critical step in a capillary electrophoresis (CE) analysis. Electrokinetic injection is the simplest approach and is often selected for implementation in portable CE instruments. However, in order to minimize the effect of sample matrix upon the results of a CE analysis, hydrodynamic injection is preferred. Although portable CE instruments with hydrodynamic injection have been reported, injection has always been performed at the grounded end of the capillary. This simplifies fluidic handling but limits coupling with electrochemical detectors and electrospray ionization-mass spectrometry (ESI-MS). We demonstrated previously that injection at the high-voltage (HV) end of the capillary could be performed using an HV-compatible rotary injection valve (fixed-volume injection). However, the mismatch between the bore sizes of the channels on the rotor-stator valve and the separation capillary caused peak tailing and undesired mixing, impairing analytical performance. In this work, we present an HV-compatible hydrodynamic injection approach that overcomes the issues associated with the fixed-volume injection approach reported previously. The performance of the CE instrument was demonstrated by analyzing a mixture of 13 amino acids by CE coupled to laser-induced fluorescence, which showed relative standard deviations for peak area and migration time below 5% and 1%, respectively, for triplicate analysis. Additionally, replicate measurements of a mixture of amino acids, peptides, nucleobases, and nucleosides by CE coupled to electrospray ionization-mass spectrometry (CE-ESI-MS) were performed to evaluate peak tailing, and results were similar to those obtained with a commercial CE-ESI-MS setup.


Assuntos
Hidrodinâmica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletroforese Capilar/métodos , Peptídeos , Aminoácidos
8.
BMC Cancer ; 23(1): 329, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038139

RESUMO

BACKGROUND: Most cases of lung cancer are diagnosed at advanced stage. Detection of genetic and epigenetic markers in cell-free DNA (cfDNA) is a promising tool for the diagnosis of lung cancer at an early stage. The aim of this study was to identify non-invasive diagnostic markers in cell free DNA (cfDNA) for non-small cell lung cancer (NSCLC) as it is the most common type of lung cancer. METHODS: We investigated the cfDNA HOXA9 gene promotor methylation by pyrosequencing. Copy number variation of SOX2 and HV2 genes were detected by real-time PCR in cfDNA extracted from plasma samples of 25 newly diagnosed NSCLC patients and 25 age and sex matched controls. RESULTS: Methylation level of HOXA9 was significantly higher in NSCLC patients than controls (p > 0.001). SOX2 showed significantly higher CNV and HV2 showed lower CNV in patients than controls (p > 0.001, p = 0.001 respectively). Receiver Operating Characteristic (ROC) curve analysis for HOXA9 methylation, SOX2 CNV and HV2 CNV showed a discrimination power of 79.4%, 80% and 77.5% respectively and the area under the curve for the combined analysis of the three genes was 0.958 with 88% sensitivity and 100% specificity. CONCLUSIONS: In this study, we suggest a potentially diagnostic panel that may help in detection of lung cancer with high sensitivity and specificity using cell free DNA. This Panel included HOXA9 gene methylation and the CNV of SOX2 and HV2 genes.


Assuntos
Antígeno Carcinoembrionário , Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Proteínas de Homeodomínio , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Ácidos Nucleicos Livres/sangue , Regiões Promotoras Genéticas , Metilação de DNA , Variações do Número de Cópias de DNA , Antígeno Carcinoembrionário/sangue , Proteínas de Homeodomínio/sangue , Fatores de Transcrição SOXB1/sangue
9.
Brain Behav Immun ; 114: 22-45, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37557959

RESUMO

Approximately 20-68% of traumatic brain injury (TBI) patients exhibit trauma-associated olfactory deficits (OD) which can compromise not only the quality of life but also cognitive and neuropsychiatric functions. However, few studies to date have examined the impact of experimental TBI on OD. The present study examined inflammation and neuronal dysfunction in the olfactory bulb (OB) and the underlying mechanisms associated with OD in male mice using a controlled cortical impact (CCI) model. TBI caused a rapid inflammatory response in the OB as early as 24 h post-injury, including elevated mRNA levels of proinflammatory cytokines, increased numbers of microglia and infiltrating myeloid cells, and increased IL1ß and IL6 production in these cells. These changes were sustained for up to 90 days after TBI. Moreover, we observed significant upregulation of the voltage-gated proton channel Hv1 and NOX2 expression levels, which were predominantly localized in microglia/macrophages and accompanied by increased reactive oxygen species production. In vivo OB neuronal firing activities showed early neuronal hyperexcitation and later hypo-neuronal activity in both glomerular layer and mitral cell layer after TBI, which were improved in the absence of Hv1. In a battery of olfactory behavioral tests, WT/TBI mice displayed significant OD. In contrast, neither Hv1 KO/TBI nor NOX2 KO/TBI mice showed robust OD. Finally, seven days of intranasal delivery of a NOX2 inhibitor (NOX2ds-tat) ameliorated post-traumatic OD. Collectively, these findings highlight the importance of OB neuronal networks and its role in TBI-mediated OD. Thus, targeting Hv1/NOX2 may be a potential intervention for improving post-traumatic anosmia.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos do Olfato , Humanos , Masculino , Camundongos , Animais , Bulbo Olfatório , Qualidade de Vida , Lesões Encefálicas Traumáticas/metabolismo , Olfato/fisiologia , Microglia/metabolismo , Transtornos do Olfato/etiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Br J Clin Pharmacol ; 89(3): 1127-1138, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217901

RESUMO

Dihydroorotate dehydrogenase (DHODH) is a mitochondrial enzyme that is essential for pyrimidine de novo synthesis. Rapidly growing cancer cells and replicating viruses are dependent on host cell nucleotides, the precursors of which are provided by DHODH. Hence, DHODH becomes an ideal target for pharmacological intervention. RP7214 is a potent and selective inhibitor of human DHODH and has shown antiviral and antileukaemic activity in preclinical studies. This paper describes the phase I study that evaluated the safety and pharmacokinetics of single and multiple ascending doses (SAD and MAD) and the food effect of RP7214 in healthy volunteers (HVs). The study was a randomized, double-blind, placebo-controlled trial of single dose (100, 200 and 400 mg QD), multiple doses (200 and 400 mg BID for 7 days) and a food effect study at a single dose of 200 mg. A total of 18, 12 and 12 HVs were enrolled in the SAD, MAD and food effect parts of the study, respectively. RP7214 was well tolerated at all dose levels. There were 20 treatment-emergent adverse events (TEAEs) reported, out of which most were mild to moderate in severity while three TEAEs were grade ≥3. RP7214 showed accumulation on multiple dosing. Steady-state concentrations were reached within about 3-6 days. The mean plasma half-life at steady-state was 12.8 hours (9.9-15.3). Food did not impact the absorption of RP7214. Inhibition of DHODH, as evidenced by increased dihydroorotate levels, was observed, confirming target engagement. The high systemic exposure with a favourable safety profile shows potential for the development of RP7214 in SARS-CoV-2 and acute myeloid leukaemia (NCT04680429).


Assuntos
COVID-19 , Di-Hidro-Orotato Desidrogenase , Humanos , Voluntários Saudáveis , SARS-CoV-2 , Inibidores Enzimáticos/efeitos adversos , Método Duplo-Cego , Relação Dose-Resposta a Droga
11.
Ann Noninvasive Electrocardiol ; 28(5): e13076, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37496182

RESUMO

BACKGROUND: Invasive recording of His bundle signals (HBS) in electrophysiological study (EPS) is important in determining HV interval, the time taken to activate the ventricles from the His bundle. Noninvasive surface measurements of HBS are attempted by averaging typically 100-200 cardiac cycles of ECG time series in body surface potential mapping (BSPM) and in magnetocardiography (MCG) which records weak cardiac magnetic fields by highly sensitive detectors. However, noninvasive beat-by-beat extraction of HBS is challenged by ramp-like atrial signals and noise in PR segment of the cardiac cycle. METHODS: By making use of a signal-averaged trace showing prominent HBS as a guide trace, we developed a method combining interval-dependent wavelet thresholding (IDWT) and signal space projection (SSP) technique to eliminate artifacts from single beats. The method was applied on MCG recorded on 21 subjects with known HV intervals based on EPS and noninvasive signal-averaging, including five subjects with BSPM recorded subsequently. The method was also applied on stress-MCG of a subject featuring autonomic dynamics. RESULTS: HBS could be extracted from 19 out of 21 subjects by signal-averaging whose timing differed from EPS between -8 and 11 ms as tested by 2 observers. HBS in single beats were seen as aligned patterns in inter-beat contours and were appreciable in stress-MCG and conspicuous than BSPM. The performance of the method was evaluated on simulated and measured MCG to be adequate if the signal-to-noise ratio was at least 20 dB. CONCLUSIONS: These results suggest the use of this method for noninvasive assessments on HBS.


Assuntos
Fascículo Atrioventricular , Magnetocardiografia , Humanos , Eletrocardiografia/métodos , Mapeamento Potencial de Superfície Corporal , Artefatos
12.
Proc Natl Acad Sci U S A ; 117(34): 20898-20907, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788354

RESUMO

The voltage-gated proton channel Hv1 is a member of the voltage-gated ion channel superfamily, which stands out in design: It is a dimer of two voltage-sensing domains (VSDs), each containing a pore pathway, a voltage sensor (S4), and a gate (S1) and forming its own ion channel. Opening of the two channels in the dimer is cooperative. Part of the cooperativity is due to association between coiled-coil domains that extend intracellularly from the S4s. Interactions between the transmembrane portions of the subunits may also contribute, but the nature of transmembrane packing is unclear. Using functional analysis of a mutagenesis scan, biochemistry, and modeling, we find that the subunits form a dimer interface along the entire length of S1, and also have intersubunit contacts between S1 and S4. These interactions exert a strong effect on gating, in particular on the stability of the open state. Our results suggest that gating in Hv1 is tuned by extensive VSD-VSD interactions between the gates and voltage sensors of the dimeric channel.


Assuntos
Canais Iônicos/metabolismo , Sequência de Aminoácidos , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Prótons
13.
Proc Natl Acad Sci U S A ; 117(24): 13490-13498, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461356

RESUMO

The voltage-gated Hv1 proton channel is a ubiquitous membrane protein that has roles in a variety of cellular processes, including proton extrusion, pH regulation, production of reactive oxygen species, proliferation of cancer cells, and increased brain damage during ischemic stroke. A crystal structure of an Hv1 construct in a putative closed state has been reported, and structural models for the channel open state have been proposed, but a complete characterization of the Hv1 conformational dynamics under an applied membrane potential has been elusive. We report structural models of the Hv1 voltage-sensing domain (VSD), both in a hyperpolarized state and a depolarized state resulting from voltage-dependent conformational changes during a 10-µs-timescale atomistic molecular dynamics simulation in an explicit membrane environment. In response to a depolarizing membrane potential, the S4 helix undergoes an outward displacement, leading to changes in the VSD internal salt-bridge network, resulting in a reshaping of the permeation pathway and a significant increase in hydrogen bond connectivity throughout the channel. The total gating charge displacement associated with this transition is consistent with experimental estimates. Molecular docking calculations confirm the proposed mechanism for the inhibitory action of 2-guanidinobenzimidazole (2GBI) derived from electrophysiological measurements and mutagenesis. The depolarized structural model is also consistent with the formation of a metal bridge between residues located in the core of the VSD. Taken together, our results suggest that these structural models are representative of the closed and open states of the Hv1 channel.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Cristalografia por Raios X , Guanidinas/metabolismo , Humanos , Ligação de Hidrogênio , Canais Iônicos/genética , Potenciais da Membrana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Prótons
14.
Pestic Biochem Physiol ; 192: 105416, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105624

RESUMO

Established dogma concerning the action of insecticidal arthropod-derived peptides (e.g., scorpion toxins), was that they acted on the peripheral nervous system and were excluded from the central nervous system (CNS) by barrier systems. Initial evidence for a CNS-directed toxicological effect following parenteral administration was for a novel peptide from the Hobo spider, Tegeneria agrestis. This toxin was inactive on peripheral sensory and motor nerves, but had a potent excitatory effect on the CNS of larval Musca domestica. Recently, a commercialized formulation of GS-omega/kappa-Hxtx-Hv1a (HXTX), derived from the venom of the Australian blue mountain funnel web spider (Hadronyche versuta) was introduced for use in agriculture by Vestaron Corp. Its primary mode of action was found to be central neuroexcitation via positive allosteric modulation of nicotinic acetylcholine receptors (nAchR) of cockroach neurons. In the present study, this peptide showed hyperexcitation followed by a decrease in firing of the Drosophila melanogaster larval CNS that was prevented by co-exposure to 100 nM α-bungarotoxin (α-BGTX), a classical nAchR noncompetitive antagonist. This effect was mirrored in isobologram analysis, which showed clear antagonism between the two toxins when injected into adult houseflies. Interestingly, U1-agatoxin-Ta1b-QA derived from Tegeneria agrestis (VST-7304) had a similar biphasic action, but showed increased nerve discharge when co-exposed with 100 nM α-BGTX, and had additive effects when injected together with α-BGTX in isobologram analyses. Binary mixtures of HXTX or VST-7304 with 30 nM nicotine showed clear evidence of synergized nerve block, which was also observed for mixtures of HXTX and VST-7304. Taken together, these data suggest that HXTX and VST-7304 have somewhat different and complementary modes of action.


Assuntos
Proteínas de Drosophila , Venenos de Aranha , Animais , Venenos de Aranha/toxicidade , Drosophila melanogaster , Austrália , Peptídeos/farmacologia
15.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447804

RESUMO

A synthetic partial discharge (PD) calibrator has been developed to qualify PD analyzers used for insulation diagnosis of HVAC and HVDC grids including cable systems, AIS, GIS, GIL, power transformers, and HVDC converters. PD analyzers that use high-frequency current transformers (HFCT) can be qualified by means of the metrological and diagnosis tests arranged in this calibrator. This synthetic PD calibrator can reproduce PD pulse trains of the same sequence as actual representative defects (cavity, surface, floating potential, corona, SF6 protrusion, SF6 jumping particles, bubbles in oil, etc.) acquired in HV equipment in service or by means of measurements made in HV laboratory test cells. The diagnostic capabilities and PD measurement errors of the PD analyzers using HFCT sensors can be determined. A new time parameter, "PD Time", associated with any arbitrary PD current pulse i(t) is introduced for calibration purposes. It is defined as the equivalent width of a rectangular PD pulse with the same charge value and amplitude as the actual PD current pulse. The synthetic PD calibrator consists of a pulse generator that operates on a current loop matched to 50 Ω impedance to avoid unwanted reflections. The injected current is measured by a reference measurement system built into the PD calibrator that uses two HFCT sensors to ensure that the current signal is the same at the input and output of the calibration cage where the HFCT of the PD analyzer is being calibrated. Signal reconstruction of the HFCT output signal to achieve the input signal is achieved by applying state variable theory using the transfer impedance of the HFCT sensor in the frequency domain.


Assuntos
Calibragem , Humanos
16.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762383

RESUMO

The properties, features of thermal behavior and crystallization of copolymers containing various types of valerate monomers were studied depending on the set and ratio of monomers. We synthesized and studied the properties of three-component copolymers containing unusual monomers 4-hydroxyvalerate (4HV) and 3-hydroxy-4-methylvalerate (3H4MV), in addition to the usual 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) monomers. The results showed that P(3HB-co-3HV-co-4HV) and P(3HB-co-3HV-co-3H4MV) terpolymers tended to increase thermal stability, especially for methylated samples, including an increase in the gap between melting point (Tmelt) and thermal degradation temperature (Tdegr), an increase in the melting point and glass transition temperature, as well as a lower degree of crystallinity (40-46%) compared with P(3HB-co-3HV) (58-66%). The copolymer crystallization kinetics depended on the set and ratio of monomers. For terpolymers during exothermic crystallization, higher rates of spherulite formation (Gmax) were registered, reaching, depending on the ratio of monomers, 1.6-2.0 µm/min, which was several times higher than the Gmax index (0.52 µm/min) for the P(3HB-co-3HV) copolymer. The revealed differences in the thermal properties and crystallization kinetics of terpolymers indicate that they are promising polymers for processing into high quality products from melts.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Poliésteres/química , Valeratos , Cristalização , Temperatura
17.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047188

RESUMO

Myeloid-derived suppressor cells (MDSCs) are key determinants of the immunosuppressive microenvironment in tumors. As ion channels play key roles in the physiology/pathophysiology of immune cells, we aimed at studying the ion channel repertoire in tumor-derived polymorphonuclear (PMN-MDSC) and monocytic (Mo-MDSC) MDSCs. Subcutaneous tumors in mice were induced by the Lewis lung carcinoma cell line (LLC). The presence of PMN-MDSC (CD11b+/Ly6G+) and Mo-MDSCs (CD11b+/Ly6C+) in the tumor tissue was confirmed using immunofluorescence microscopy and cells were identified as CD11b+/Ly6G+ PMN-MDSCs and CD11b+/Ly6C+/F4/80-/MHCII- Mo-MDSCs using flow cytometry and sorting. The majority of the myeloid cells infiltrating the LLC tumors were PMN-MDSC (~60%) as compared to ~10% being Mo-MDSCs. We showed that PMN- and Mo-MDSCs express the Hv1 H+ channel both at the mRNA and at the protein level and that the biophysical and pharmacological properties of the whole-cell currents recapitulate the hallmarks of Hv1 currents: ~40 mV shift in the activation threshold of the current per unit change in the extracellular pH, high H+ selectivity, and sensitivity to the Hv1 inhibitor ClGBI. As MDSCs exert immunosuppression mainly by producing reactive oxygen species which is coupled to Hv1-mediated H+ currents, Hv1 might be an attractive target for inhibition of MDSCs in tumors.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Linhagem Celular , Monócitos , Células Mieloides , Células Supressoras Mieloides/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
18.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629152

RESUMO

The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young's modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.


Assuntos
Impressão Tridimensional , Células NIH 3T3 , Animais , Camundongos , Fêmur , Suínos , Transplante Ósseo
19.
Wien Med Wochenschr ; 173(13-14): 319-328, 2023 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35166979

RESUMO

BACKGROUND: Mental comorbidity plays an increasingly important role in determining the specific rehabilitation needs of patients in Germany in the context of other personal, social and occupational factors. In order to make the DRV's list of criteria more meaningful when assigning patients to one type of rehabilitation, this retrospective analysis is intended to determine from which of the two rehabilitation concepts examined (orthopedic rehabilitation or healing procedures (HV)/behavioral-medical orthopedic rehabilitation (BMOR)) patients with mental comorbidity (taking into account gender, employment status of the main orthopedic diagnosis) benefit more. METHODS: Using the screening questionnaires HADS­A, HADS­D, SIMBO and BPI as well as a hospital questionnaire at the beginning of rehabilitation, data from 913 subjects (529 m/384 w) were collected and evaluated. Of these, 43% were assigned to HV and 57% to BMOR. Thus, in addition to the main orthopedic diagnosis, the frequency distribution of the factors psychological comorbidity, sex and, employment status (in the sense of unemployment) was determined. Using HADS, the benefit was determined at the end of the therapy by comparing the score medians. RESULTS: Frequency distributions and the development of HADS scores show that the prior classification according to psychological comorbidity was correct. Women were more often affected by mental comorbidity and women achieved greater success in BMOR. Regarding the main orthopedic diagnosis, a high prevalence of cervical and lumbar spine complaints was found. According to logistic regression with model decomposition, the variables gender, HADS­A and -D at the beginning of rehabilitation and the psychological comorbidity (yes/no) are suitable to correctly allocate the patients with 76.86% to one of the two types of therapy. CONCLUSIONS: The presence of mental comorbidity appears to be a useful indicator that should be retained in the DRV's criteria catalog as one of the main criteria for allocation to BMOR. Female gender in connection with the presence of mental co-morbidity can also be considered a conclusive criterion. With regard to the main orthopedic diagnosis, cervical spine complaints may be particularly suitable as an allocation criterion.


Assuntos
Emprego , Humanos , Feminino , Estudos Retrospectivos , Comorbidade , Alemanha/epidemiologia
20.
J Foot Ankle Surg ; 62(4): 601-604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36496338

RESUMO

Hallux valgus is a complex condition understood to involve pathomechanics in all 3 of the cardinal planes. Despite this, the bulk of its historical evaluation has been in the transverse plane, and one might argue that the traditional and more commonly performed univariate and bivariate analyses within the literature do not comprehensively describe the potential interrelationships between the planes during perioperative assessment. Therefore this investigation aimed to evaluate relationships between common radiographic parameters measured in the three cardinal planes by means of a multivariate regression analysis. Serial analyses utilizing the first intermetatarsal angle, hallux valgus angle, tibial sesamoid position, proximal articular set angle, Engel's angle, first metatarsal inclination angle, and the sesamoid rotation angle were performed with varying dependent and independent variables. The tibial sesamoid position (p < .001) and proximal articular set angle (p = .014) were found to be independently associated with the first intermetatarsal angle, while the hallux valgus angle (p = .712), Engel's angle (p = .646), first metatarsal inclination angle (p = .097), and sesamoid rotation angle (p = .099) were not. The tibial sesamoid position (p = .003), proximal articular set angle (p < .001), Engel's angle (p = .006), and sesamoid rotation angle (p = .003) were found to be independently associated with the hallux valgus angle, while the first intermetatarsal angle (p = .712) and first metatarsal inclination angle (p = .400) were not. The first intermetatarsal angle (p < .001), hallux valgus angle (p = .003), and proximal articular set angle (p = .015) were found to be independently associated with the tibial sesamoid position, while Engel's angle (p = .400), the first metatarsal inclination angle (p = .088), and the sesamoid rotation angle (p = .649) were not. These findings appear to question a direct relationship between the first intermetatarsal angle and hallux valgus angle, as well as potentially infer a relationship between the frontal plane with the hallux valgus angle.


Assuntos
Joanete , Hallux Valgus , Ossos do Metatarso , Humanos , Hallux Valgus/diagnóstico por imagem , Hallux Valgus/cirurgia , Radiografia , Ossos do Metatarso/diagnóstico por imagem , Ossos do Metatarso/cirurgia , Análise Multivariada , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa