Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2405160121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976765

RESUMO

Due to the scarcity of rock samples, the Hadean Era predating 4 billion years ago (Ga) poses challenges in understanding geological processes like subaerial weathering and plate tectonics that are critical for the evolution of life. The Jack Hills zircon from Western Australia, the primary Hadean samples available, offer valuable insights into magma sources and tectonic genesis through trace element signatures. However, a consensus on these signatures has not been reached. To address this, we developed a machine learning classifier capable of deciphering the geochemical fingerprints of zircon. This allowed us to identify the oldest detrital zircon originating from sedimentary-derived "S-type" granites. Our results indicate the presence of S-type granites as early as 4.24 Ga, persisting throughout the Hadean into the Archean. Examining global detrital zircon across Earth's history reveals consistent supercontinent-like cycles from the present back to the Hadean. These findings suggest that a significant amount of Hadean continental crust was exposed, weathered into sediments, and incorporated into the magma sources of Jack Hills zircon. Only the early operation of both subaerial weathering and plate subduction can account for the prevalence of S-type granites we observe. Additionally, the periodic evolution of S-type granite proportions implies that subduction-driven tectonic cycles were active during the Hadean, at least around 4.2 Ga. The evidence thus points toward an early Earth resembling the modern Earth in terms of active tectonics and habitable surface conditions. This suggests the potential for life to originate in environments like warm ponds rather than extreme hydrothermal settings.

2.
Proc Natl Acad Sci U S A ; 119(18): e2120241119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452330

RESUMO

SignificanceDue to active plate tectonics, there are no direct rock archives covering the first ca. 500 million y of Earth's history. Therefore, insights into Hadean geodynamics rely on indirect observations from geochemistry. We present a high-precision 182W dataset for rocks from the Kaapvaal Craton, southern Africa, revealing the presence of Hadean protocrustal remnants in Earth's mantle. This has broad implications for geochemists, geophysicists, and modelers, as it bridges contrasting 182W isotope patterns in Archean and modern mantle-derived rocks. The data reveal the origin of seismically and isotopically anomalous domains in the deep mantle and also provide firm evidence for the operation of silicate differentiation processes during the first 60 million y of Earth's history.

3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602806

RESUMO

The nature of Earth's earliest crust and the processes by which it formed remain major issues in Precambrian geology. Due to the absence of a rock record older than ∼4.02 Ga, the only direct record of the Hadean is from rare detrital zircon and that largely from a single area: the Jack Hills and Mount Narryer region of Western Australia. Here, we report on the geochemistry of Hadean detrital zircons as old as 4.15 Ga from the newly discovered Green Sandstone Bed in the Barberton greenstone belt, South Africa. We demonstrate that the U-Nb-Sc-Yb systematics of the majority of these Hadean zircons show a mantle affinity as seen in zircon from modern plume-type mantle environments and do not resemble zircon from modern continental or oceanic arcs. The zircon trace element compositions furthermore suggest magma compositions ranging from higher temperature, primitive to lower temperature, and more evolved tonalite-trondhjemite-granodiorite (TTG)-like magmas that experienced some reworking of hydrated crust. We propose that the Hadean parental magmas of the Green Sandstone Bed zircons formed from remelting of mafic, mantle-derived crust that experienced some hydrous input during melting but not from the processes seen in modern arc magmatism.

4.
Proc Natl Acad Sci U S A ; 117(35): 21101-21107, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817548

RESUMO

Accurately quantifying the composition of continental crust on Hadean and Archean Earth is critical to our understanding of the physiography, tectonics, and climate of our planet at the dawn of life. One longstanding paradigm involves the growth of a relatively mafic planetary crust over the first 1 to 2 billion years of Earth history, implying a lack of modern plate tectonics and a paucity of subaerial crust, and consequently lacking an efficient mechanism to regulate climate. Others have proposed a more uniformitarian view in which Archean and Hadean continents were only slightly more mafic than at present. Apart from complications in assessing early crustal composition introduced by crustal preservation and sampling biases, effects such as the secular cooling of Earth's mantle and the biologically driven oxidation of Earth's atmosphere have not been fully investigated. We find that the former complicates efforts to infer crustal silica from compatible or incompatible element abundances, while the latter undermines estimates of crustal silica content inferred from terrigenous sediments. Accounting for these complications, we find that the data are most parsimoniously explained by a model with nearly constant crustal silica since at least the early Archean.

5.
Proc Natl Acad Sci U S A ; 117(5): 2309-2318, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964848

RESUMO

Determining the age of the geomagnetic field is of paramount importance for understanding the evolution of the planet because the field shields the atmosphere from erosion by the solar wind. The absence or presence of the geomagnetic field also provides a unique gauge of early core conditions. Evidence for a geomagnetic field 4.2 billion-year (Gy) old, just a few hundred million years after the lunar-forming giant impact, has come from paleomagnetic analyses of zircons of the Jack Hills (Western Australia). Herein, we provide new paleomagnetic and electron microscope analyses that attest to the presence of a primary magnetic remanence carried by magnetite in these zircons and new geochemical data indicating that select Hadean zircons have escaped magnetic resetting since their formation. New paleointensity and Pb-Pb radiometric age data from additional zircons meeting robust selection criteria provide further evidence for the fidelity of the magnetic record and suggest a period of high geomagnetic field strength at 4.1 to 4.0 billion years ago (Ga) that may represent efficient convection related to chemical precipitation in Earth's Hadean liquid iron core.

6.
Proc Natl Acad Sci U S A ; 117(49): 30993-31001, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229590

RESUMO

Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high 3He/4He. However, it is not understood why some OIB host anomalous 182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous 182W and examine how Sr-Nd-Hf-Pb isotopic variations-useful for tracing subducted, recycled crust-relate to high 3He/4He and anomalous 182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude 182W anomalies are found only in geochemically depleted mantle domains-with high 143Nd/144Nd and low 206Pb/204Pb-lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low 3He/4He and lack anomalous 182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth's mantle. We show that high-3He/4He mantle domains with anomalous 182W have low W and 4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low 3He/4He and normal (not anomalous) 182W characteristic of subducted crust. Thus, high 3He/4He and anomalous 182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high 3He/4He and anomalous 182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth's interior.

7.
Proc Natl Acad Sci U S A ; 116(2): 407-412, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30598434

RESUMO

Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.

8.
Proc Natl Acad Sci U S A ; 115(41): 10287-10292, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249648

RESUMO

Hydrosphere interactions and alteration of the terrestrial crust likely played a critical role in shaping Earth's surface, and in promoting prebiotic reactions leading to life, before 4.03 Ga (the Hadean Eon). The identity of aqueously altered material strongly depends on lithospheric cycling of abundant and water-soluble elements such as Si and O. However, direct constraints that define the character of Hadean sedimentary material are absent because samples from this earliest eon are limited to detrital zircons (ZrSiO4). Here we show that concurrent measurements of Si and O isotope ratios in Phanerozoic and detrital pre-3.0 Ga zircon constrain the composition of aqueously altered precursors incorporated into their source melts. Phanerozoic zircon from (S)edimentary-type rocks contain heterogeneous δ18O and δ30Si values consistent with assimilation of metapelitic material, distinct from the isotopic character of zircon from (I)gneous- and (A)norogenic-type rocks. The δ18O values of detrital Archean zircons are heterogeneous, although yield Si isotope compositions like mantle-derived zircon. Hadean crystals yield elevated δ18O values (vs. mantle zircon) and δ30Si values span almost the entire range observed for Phanerozoic samples. Coupled Si and O isotope data represent a constraint on Hadean weathering and sedimentary input into felsic melts including remelting of amphibolites possibly of basaltic origin, and fractional addition of chemical sediments, such as cherts and/or banded iron formations (BIFs) into source melts. That such sedimentary deposits were extensive enough to change the chemical signature of intracrustal melts suggests they may have been a suitable niche for (pre)biotic chemistry as early as 4.1 Ga.


Assuntos
Isótopos/análise , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Silicatos/análise , Silicatos/química , Silício/análise , Zircônio/análise , Zircônio/química , Austrália , Sedimentos Geológicos/química , África do Sul
9.
Proc Natl Acad Sci U S A ; 115(25): 6353-6356, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866820

RESUMO

Understanding Hadean (>4 Ga) Earth requires knowledge of its crust. The composition of the crust and volatiles migrating through it directly influence the makeup of the atmosphere, the composition of seawater, and nutrient availability. Despite its importance, there is little known and less agreed upon regarding the nature of the Hadean crust. By analyzing the 87Sr/86Sr ratio of apatite inclusions in Archean zircons from Nuvvuagittuq, Canada, we show that its protolith had formed a high (>1) Rb/Sr ratio reservoir by at least 4.2 Ga. This result implies that the early crust had a broad range of igneous rocks, extending from mafic to highly silicic compositions.

10.
Proc Natl Acad Sci U S A ; 112(47): 14518-21, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26483481

RESUMO

Evidence of life on Earth is manifestly preserved in the rock record. However, the microfossil record only extends to ∼ 3.5 billion years (Ga), the chemofossil record arguably to ∼ 3.8 Ga, and the rock record to 4.0 Ga. Detrital zircons from Jack Hills, Western Australia range in age up to nearly 4.4 Ga. From a population of over 10,000 Jack Hills zircons, we identified one >3.8-Ga zircon that contains primary graphite inclusions. Here, we report carbon isotopic measurements on these inclusions in a concordant, 4.10 ± 0.01-Ga zircon. We interpret these inclusions as primary due to their enclosure in a crack-free host as shown by transmission X-ray microscopy and their crystal habit. Their δ(13)CPDB of -24 ± 5‰ is consistent with a biogenic origin and may be evidence that a terrestrial biosphere had emerged by 4.1 Ga, or ∼ 300 My earlier than has been previously proposed.


Assuntos
Carbono/análise , Silicatos/análise , Zircônio/análise , Planeta Terra
11.
Orig Life Evol Biosph ; 47(3): 281-296, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432500

RESUMO

Here we overview the chemical evolution of RNA molecules from inorganic material through mineral-mediated RNA formation compatible with the plausible early Earth environments. Pathways from the gas-phase reaction to the formation of nucleotides, activation and oligomerization of nucleotides, seem to be compatible with specific environments. However, how these steps interacted is not clear since the chemical conditions are frequently different and can be incompatible between them; thus the products would have migrated from one place to another, suitable for further chemical evolution. In this review, we summarize certain points to scrutinize the RNA World hypothesis.


Assuntos
Planeta Terra , Evolução Química , Origem da Vida , RNA/química , Minerais/química , Nucleotídeos/química , Fenômenos de Química Orgânica
12.
Geochem Trans ; 15: 8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959099

RESUMO

Procedures for the analysis of phosphorus in geological material normally aims for the determination of the total amount of P expressed as orthophosphate [Formula: see text] or the differentiation between inorganic and organic P. This is probably due to analytical difficulties but also to the prevalent opinion that the chemistry of phosphorus in geological environments is almost entirely restricted to the mineral apatite. Because of the low solubility of apatite it is, therefore, commonly argued that little P was around for prebiotic chemistry and that pre-biological processes would essentially have had to do without this indispensable element unless it was provided by alternative sources or mechanisms (such as reduction and activation by lightning or delivery to Earth by celestial bodies). It is a paradox that the potential existence of reactive phosphorus compounds, such as the mineral schreibersite - iron phosphide, in geological material on Earth is seldom considered although we are aware of the existence of such compounds in meteorite material. The content of Al2O3 in rocks appears to be important for the speciation of phosphorus and for how strongly it binds to silicates. In general, low alumina seems to promote the existence of isolated charge-balanced phosphorus complexes.

13.
Astrobiology ; 24(9): 881-891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39344973

RESUMO

Big impacts on the early Earth would have created highly reducing atmospheres that generated molecules needed for the origin of life, such as nitriles. However, such impactors could have been followed by collisions that were sufficiently big to vaporize the ocean and destroy any pre-existing life. Thus, a post-impact-reducing atmosphere that gives rise to life needs to be followed by a lack of subsequent sterilizing impacts for life to persist. We assume that prebiotic chemistry required a post-impact-reducing atmosphere. Then, using statistics for the impact history on Earth and the minimum impact mass needed to generate post-impact highly reducing atmospheres, we show that the median timing of impact-driven biopoiesis is favored early in the Hadean, ∼4.35 Ga. However, uncertainties are large because impact bombardment is stochastic, and so biopoiesis could have occurred between 4.45 and 3.9 Ga within 95% uncertainty. In an optimistic scenario for biopoiesis from post-impact-reducing atmospheres, we find that the origin of life is favorable in ∼90% of stochastic impact realizations. In our most pessimistic case, biopoiesis is still fairly likely (∼20% chance). This potentially bodes well for life on rocky exoplanets that have experienced an early episode of impact bombardment given how planets form.


Assuntos
Atmosfera , Origem da Vida , Atmosfera/química , Planeta Terra , Fatores de Tempo , Exobiologia/métodos
14.
Astrobiology ; 24(S1): S76-S106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498817

RESUMO

Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.


Assuntos
Planeta Terra , Planetas , Lua , Atmosfera/química , Oceanos e Mares
15.
Life (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37763303

RESUMO

The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.

16.
Life (Basel) ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36362844

RESUMO

The role of minerals in the chemical evolution of RNA molecules is an important issue when considering the early stage of the Hadean Earth. In particular, the interaction between functional ribozymes and ancient minerals under simulated primitive conditions is a recent research focus. We are currently attempting to design a primitive RNA metabolic network which would function with minerals, and believe that the simulated chemical network of RNA molecules would be useful for evaluation of the chemical evolution from a simple RNA mixture to an RNA-based life-like system. First, we measured the binding interactions of oligonucleotides with four types of minerals; Aerosil silica, zirconium silicate, sepiolite, and montmorillonite. Oligonucleotides bound zirconium silicate and montmorillonite in the presence of MgCl2, and bound sepiolite both in the presence and absence of MgCl2, but they did not bind Aerosil. Based on the binding behavior, we attempted the self-cleavage reaction of the hammerhead ribozyme from an avocado viroid. This reaction was strongly inhibited by zirconium silicate, a compound regarded as mineral evidence for the existence of water. The present study suggests that the chemical evolution of functional RNA molecules requires specific conformational binding, resulting in efficient ribozyme function as well as zirconium silicate for the chemical evolution of biomolecules.

17.
Life (Basel) ; 12(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36013404

RESUMO

The RNA world hypothesis suggests that chemical networks consisting of functional RNA molecules could have constructed a primitive life-like system leading a first living system. The chemical evolution scenario of RNA molecules should be consistent with the Hadean Earth environment. We have demonstrated the importance of the environment at both high temperature and high pressure, using different types of hydrothermal flow reactor systems and high-pressure equipment. In the present study, we have attempted to develop an alternative easy-to-implement method for high-pressure measurements and demonstrate that the system is applicable as an efficient research tool for high-pressure experiments at pressures up to 30 MPa. We demonstrate the usefulness of the system by detecting the high-pressure influence for the self-cleavage of avocado hammerhead ribozyme (ASBVd(-):HHR) at 45-65 °C. A kinetic analysis of the high-pressure behavior of ASBVd(-):HHR shows that the ribozyme is active at 30 MPa and its activity is sensitive to pressures between 0.1-30 MPa. The surprising finding that such a short ribozyme is effective for self-cleavage at a high pressure suggests the importance of pressure as a factor for selection of adaptable RNA molecules towards an RNA-based life-like system in the Hadean Earth environment deep in the ocean.

18.
Life (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068713

RESUMO

The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.

19.
Astrobiology ; 20(9): 1121-1149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32876492

RESUMO

The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.


Assuntos
Planeta Terra , Evolução Química , Meio Ambiente Extraterreno/química , Meteoroides , Origem da Vida , Fenômenos Geológicos
20.
Phys Life Rev ; 34-35: 62-82, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32303465

RESUMO

It has been experimentally demonstrated that, under alkaline conditions, silica is able to induce the formation of mineral self-assembled inorganic-inorganic composite materials similar in morphology, texture and nanostructure to the hybrid biomineral structures that, millions of years later, life was able to self-organize. These mineral self-organized structures (MISOS) have been also shown to work as effective catalysts for prebiotic chemical reactions and to easily create compartmentalization within the solutions where they form. We reason that, during the very earliest history of this planet, there was a geochemical scenario that inevitably led to the existence of a large-scale factory of simple and complex organic compounds, many of which were relevant to prebiotic chemistry. The factory was built on a silica-rich high-pH ocean and powered by two main factors: a) a quasi-infinite source of simple carbon molecules synthesized abiotically from reactions associated with serpentinization, or transported from meteorites and produced from their impact on that alkaline ocean, and b) the formation of self-organized silica-metal mineral composites that catalyze the condensation of simple molecules in a methane-rich reduced atmosphere. We discuss the plausibility of this geochemical scenario, review the details of the formation of MISOS and its catalytic properties and the transition towards a slightly alkaline to neutral ocean.


Assuntos
Meteoroides , Origem da Vida , Planeta Terra , Minerais , Planetas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa