Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Parasitol Res ; 123(3): 148, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433138

RESUMO

Free-living amoebae (FLA) include amphizoic microorganisms important in public health, widely isolated from air, water, and soil. However, its occurrence in sewage-related environments still needs to be systematically documented. This study summarizes the occurrence of FLA in sewage-related environments through a systematic review with meta-analysis. A total of 1983 scientific article were retrieved from different databases, of which 35 were selected and analyzed using a random effects forest plot model with a 95% confidence interval (IC). The pooled overall prevalence of FLA in sewage across 12 countries was 68.96% (95% IC = 58.5-79.42). Subgroup analysis indicates high prevalence in all environments analyzed, including sewage water from the sewage treatment plant (81.19%), treated sewage water (75.57%), sewage-contaminated water (67.70%), sediment contaminated by sewage (48.91%), and sewage water (47.84%). Prevalence values of Acanthamoeba spp., Hartmanella/Vermamoeba spp., and Naegleria spp. are 47.48%, 28.24%, and 16.69%, respectively. Analyzing the species level, the distribution is as follows: Acanthamoeba palestinensis (88%), A. castellanii (23.74%), A. astronyxis (19.18%), A. polyphaga (13.59%), A. culbertsoni (12.5%), A. stevensoni (8.33%), A. tubiashi (4.35%) and A. hatchetti (1.1%), Naegleria fowleri (28.4%), N. gruberi (25%), N. clarki (8.33%), N. australiensis (4.89%) and N. italica (4.29%), Hartmannella/Vermamoeba exundans (40%) and H.V. vermiform (32.61%). Overall, our findings indicate a high risk associated with sewage-related environments, as the prevalence of FLA, including pathogenic strains, is high, even in treated sewage water. The findings of this study may be valuable both for risk remediation actions against amoebic infections and for future research endeavors.


Assuntos
Acanthamoeba , Amoeba , Hartmannella , Prevalência , Esgotos , Água
2.
Parasitol Res ; 118(6): 1999-2004, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972570

RESUMO

In the present article, we report on the identification of Vermamoeba (Hartmannella) vermiformis as the etiological agent of a tissue infection close to the eye of a female patient. Laboratory examination revealed no involvement of any pathogenic bacteria or fungi in the tissue infection. V. vermiformis was identified by cultivation and morphology of trophozoites and cysts as well as phylogenetic analysis of nuclear 18S rDNA. The lesion improved in the course of 4 weeks by application of zinc paste.


Assuntos
Amebíase/diagnóstico , Amebíase/patologia , Hartmannella/patogenicidade , Úlcera/parasitologia , Adulto , Amebíase/parasitologia , Animais , DNA de Protozoário/genética , DNA Ribossômico/genética , Feminino , Hartmannella/classificação , Hartmannella/genética , Humanos , Filogenia , Trofozoítos/classificação , Trofozoítos/crescimento & desenvolvimento , Úlcera/patologia
3.
Parasitol Res ; 115(1): 63-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26412057

RESUMO

Free-living amoebae (FLA) are the most abundant and widely distributed protozoa in the environment. An investigation was conducted to determine the presence of free-living amoebae (FLA), Acanthamoeba and Vermamoeba in waterfronts of parks and squares and tap water of Shiraz City, Iran. FLA are considered pathogenic for human. These ubiquitous organisms have been isolated from different environments such as water, soil, and air. Eighty-two water samples were collected from different places of Shiraz City during the summer of 2013. All samples were processed in Dept. of Parasitology and Mycology, Shiraz University of Medical Sciences, Fars, Iran. Samples were screened for FLA and identified by morphological characters in the cultures, PCR amplification targeting specific genes for each genus and sequencing determined frequent species and genotypes base on NCBI database. Overall, 48 samples were positive for Acanthamoeba and Vermamoeba in non-nutrient agar culture based on morphological characteristics. The PCR examination was done successfully. Sequencing results were revealed T4 (62.96 %) genotypes as the most common genotype of Acanthamoeba in the Shiraz water sources. In addition, T5 (33.33 %) and T15 (3.71 %) were isolated from water supplies. Vermamoeba vermiformis was known the dominant species from this genus. The high frequency of Acanthamoeba spp. and Vermamoeba in different environmental water sources of Shiraz is an alert for the public health related to water sources. The result highlights a need for taking more attention to water supplies in order to prevent illnesses related to free-living amoebae.


Assuntos
Amoeba/isolamento & purificação , Abastecimento de Água , Água/parasitologia , Acanthamoeba/genética , Acanthamoeba/isolamento & purificação , Acanthamoeba/patogenicidade , Amoeba/classificação , Amoeba/genética , Amoeba/patogenicidade , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Filtração , Genótipo , Humanos , Irã (Geográfico) , Reação em Cadeia da Polimerase
4.
J Eukaryot Microbiol ; 62(3): 327-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25284205

RESUMO

Free-living amoebae are ubiquitous protozoa commonly found in water. Among them, Acanthamoeba and Vermamoeba (formerly Hartmannella) are the most represented genera. In case of stress, such as nutrient deprivation or osmotic stress, these amoebae initiate a differentiation process, named encystment. It leads to the cyst form, which is a resistant form enabling amoebae to survive in harsh conditions and resist disinfection treatments. Encystment has been thoroughly described in Acanthamoeba but poorly in Vermamoeba. Our study was aimed to follow the encystment/excystment processes by microscopic observations. We show that encystment is quite rapid, as mature cysts were obtained in 9 h, and that cyst wall is composed of two layers. A video shows that a locomotive form is likely involved in clustering cysts together during encystment. As for Acanthamoeba, autophagy is likely active during this process. Specific vesicles, possibly involved in ribophagy, were observed within the cytoplasm. Remarkably, mitochondria rearranged around the nucleus within the cyst, suggesting high needs in energy. Unlike Acanthamoeba and Naegleria, no ostioles were observed in the cyst wall suggesting that excystment is original. During excystment, large vesicles, likely filled with hydrolases, were found in close proximity to cyst wall and digest it. Trophozoite moves inside its cyst wall before exiting during excystment. In conclusion, Vermamoeba encystment/excystment displays original trends as compare to Acanthamoeba.


Assuntos
Lobosea/citologia , Lobosea/fisiologia , Esporos de Protozoários/citologia , Esporos de Protozoários/fisiologia , Microscopia de Vídeo , Fatores de Tempo
5.
J Eukaryot Microbiol ; 61(6): 611-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25040194

RESUMO

Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms that are morphologically difficult to discern from one another. In molecular phylogenetic trees of the nuclear-encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well-supported clade in Amoebozoa. The polyphyletic nature of the hartmannellids has led to many taxonomic problems, in particular paraphyletic genera. Recent taxonomic revisions have alleviated some of the problems. However, the genus Saccamoeba is paraphyletic and is still in need of revision as it currently occupies two distinct lineages. Here, we report a new clade on the tree of Tubulinea, which we infer represents a novel genus that we name Ptolemeba n. gen. This genus subsumes a clade of hartmannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba. In accordance with previous research, we formalize the clade as distinct from Saccamoeba. Transmission electron microscopy of our isolates illustrate that both molecularly discrete species can be further differentiated by their unique mitochondrial cristal morphology.


Assuntos
Lobosea/classificação , DNA Ribossômico/genética , Lobosea/genética , Lobosea/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
6.
J Appl Microbiol ; 116(3): 728-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24251398

RESUMO

AIMS: To evaluate the effect of temperature on two amoeba strains of the genera Acanthamoeba and two amoeba strains of the genera Hartmannella separately treated depending on their life stage, trophozoite or cyst, when cells are directly exposed under controlled conditions. METHODS AND RESULTS: For thermal treatments, three temperatures were selected 50, 60 and 70°C, and a microcosm was designed using dialysis bags. The inactivation of each strain was determined using a method based on the most probable number quantification on agar plates. The results showed that for all amoeba strains, thermal treatment was more effective against trophozoites compared with cyst stages. The inactivation patterns showed statistical differences between the two genera analysed at temperatures above 50°C. The effectiveness of the thermal treatments at 60 and 70°C was higher for both life stages of Hartmannella vermiformis strains compared with Acanthamoeba strains, being the most resistant Acanthamoeba cysts. CONCLUSIONS: Free-living amoebae have been isolated in a wide range of environments worldwide due to their capacity to survive under harsh conditions. This capacity is mainly based on the formation of resistant forms, such as double-walled cysts, which confers a high level of resistance as shown here for thermal treatments. SIGNIFICANCE AND IMPACT OF STUDY: Free-living amoebae survival can promote a rapid recolonization of drinking water systems and is a likely source of emerging opportunistic pathogens such as Legionella. Because of that a better understanding of the factors that affect micro-organism inactivation in water systems would allow more efficient application of disinfection treatments.


Assuntos
Acanthamoeba , Desinfecção , Hartmannella , Temperatura , Acanthamoeba/crescimento & desenvolvimento , Hartmannella/crescimento & desenvolvimento , Trofozoítos
7.
Exp Parasitol ; 145 Suppl: S62-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24721257

RESUMO

Vermamoeba vermiformis is a free-living amoeba (FLA) which is widely distributed in the environment. It is known to colonize water systems and to be a reservoir of pathogenic bacteria, such as Legionella pneumophila. For these reasons the control of V. vermiformis represents an important health issue. However, FLA may be resistant to disinfection treatments due to the process of encystment. Thereby, it is important to better understand factors influencing this process. In this aim, we investigated the effect of temperature, pH, osmotic pressure and cell concentration on the encystment of two V. vermiformis strains. Encystment was quite fast, with a 100% encystment rate being observed after 9h of incubation. For the two strains, an optimal encystment was obtained at 25 and 37°C. Concerning pH and osmotic pressure, there were different effects on the encystment according to the tested strains. For the reference strain (ATCC 50237), the patterns of encystment were similar for pH comprised between 5 and 9 and for KCl concentrations ranging from 0.05 to 0.2 mol L(-1). For the environmental strain (172A) an optimal encystment was obtained for basic pH (8 and 9) and for a concentration in KCl of 0.1 mol L(-1). The results also clearly demonstrated that the encystment rate increased with cell concentration, suggesting that there is an inter-amoebal communication. The present study establish for the first time environmental conditions favoring encystment and would lay the foundations to better control the encystment of V. vermiformis.


Assuntos
Hartmannella/fisiologia , Contagem de Células , Hartmannella/citologia , Concentração de Íons de Hidrogênio , Cinética , Oocistos/fisiologia , Pressão Osmótica/fisiologia , Temperatura , Trofozoítos/citologia , Trofozoítos/fisiologia , Água/parasitologia
8.
Pathogens ; 11(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215164

RESUMO

Cases of amoebic keratitis involving species other than Acanthamoeba are hypothesised to be underdiagnosed and poorly understood. Amoebic keratitis is debilitating and associated with chronic visual impairment. Understanding associated symptoms of non-Acanthamoeba amoebic keratitis could facilitate new diagnostic procedures and enable prompt treatment, ultimately leading to improved patient outcomes. Thus, a review of the literature was undertaken surrounding non-Acanthamoeba amoebic keratitis. Cases were geographically widespread and mostly confined to contact lens wearers ≤ 30 years old exposed to contaminated water sources and/or demonstrating poor lens hygiene. Vermamoeba vermiformis (previously Hartmanella vermiformis) was the most common causative agent, and a moderate number of mixed keratitis cases were also reported. A crucial disease indicator was early onset stromal deterioration/ulcerations, reported in 10 of the studies, usually only occurring in advanced Acanthamoeba keratitis. Mixed infections were the most difficult to treat, often requiring keratoplasty after unsuccessful combination treatment regimens. New diagnostic measures for non-Acanthamoeba amoebic keratitis should consider early onset stromal disease as a key disease indicator. Deep corneal scrapes are also necessary for accurate amoebic identification. Moreover, a combination approach to diagnosis is advised and should involve culture, microscopy and PCR techniques. In vitro drug sensitivity tests should also be conducted to help develop patient-specific treatment regimes.

9.
Artigo em Inglês | MEDLINE | ID: mdl-29250488

RESUMO

The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space-evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.


Assuntos
Amébidos/microbiologia , Interações Hospedeiro-Patógeno , Legionella/patogenicidade , Doença dos Legionários/microbiologia , Doença dos Legionários/parasitologia , Acanthamoeba/microbiologia , Amoeba/microbiologia , Biodiversidade , Evolução Biológica , Meio Ambiente , Hartmannella/microbiologia , Legionella/fisiologia , Legionella pneumophila/patogenicidade , Legionella pneumophila/fisiologia , Doença dos Legionários/transmissão , Macrófagos Alveolares/microbiologia , Naegleria/microbiologia
10.
Iran J Parasitol ; 9(1): 14-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25642255

RESUMO

BACKGROUND: Free-living amoebae (FLA) including Acanthamoeba spp. and Hartmannella spp. are the causative agents of serious corneal infection especially within contact lens wearers. Thus contact lenses and their storage case could be a suitable niche for potentially pathogenic amoebae. The main objective of the present study was to evaluate the contamination of contact lenses to free living amoebae using morphological and sequencing based methods. METHODS: Overall, 90 volunteers provided their contact lenses. All volunteers wore soft contact lenses. Both lenses were cultured in the same plate. Forty-eight of the volunteers were medical and dentistry student and 42 were ophthalmology attendees of hospitals in Tehran, Iran. All of the samples were inoculated to non-nutrient medium and monitored daily for the outgrowth of the amoebae. PCR and sequencing were performed using various primer pairs. RESULTS: Of the 90 volunteers, 9 (10%) were positive for free-living amoebae outgrowth. Morphological analysis revealed that 3 isolates were belonged to Hartmannella genus according to small round cysts and 6 isolates were belonged to Acanthamoeba genus based on the star shape of endocysts. Sequencing revealed that Acanthamoeba belonged to T4, T3 and T5 genotype. Hartmannella were also belonged to vermiformis species. DISCUSSION: The presence of potentially pathogenic free living amoebae including Acanthamoeba and Hartmannella could be a high risk for people using soft contact lenses. These results revealed that improved clarification and professional recommendations for contact lens wearers is of utmost importance.

11.
Water Res ; 67: 299-309, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25306486

RESUMO

Water systems are the primary reservoir for Legionella spp., where the bacteria live in association with other microorganisms, such as free-living amoebae. A wide range of disinfection treatments have been studied to control and prevent Legionella colonization but few of them were performed considering its relation with protozoa. In this study, the effectiveness of UV irradiation (253.7 nm) using low-pressure lamps was investigated as a disinfection method for Legionella and amoebae under controlled laboratory conditions. UV treatments were applied to 5 strains of Legionella spp., 4 strains of free-living amoeba of the genera Acanthamoeba and Vermamoeba, treating separately trophozoites and cysts, and to two different co-cultures of Legionella pneumophila with the Acanthamoeba strains. No significant differences in the UV inactivation behavior were observed among Legionella strains tested which were 3 logs reduced for fluences around 45 J/m(2). UV irradiation was less effective against free-living amoebae; which in some cases required up to 990 J/m(2) to obtain the same population reduction. UV treatment was more effective against trophozoites compared to cysts; moreover, inactivation patterns were clearly different between the genus Acanthamoeba and Vermamoeba. For the first time data about Vermamoeba vermiformis UV inactivation has been reported in a study. Finally, the results showed that the association of L. pneumophila with free-living amoebae decreases the effectiveness of UV irradiation against the bacteria in a range of 1.5-2 fold. That fact demonstrates that the relations established between different microorganisms in the water systems can modify the effectiveness of the UV treatments applied.


Assuntos
Acanthamoeba/microbiologia , Desinfecção/métodos , Legionella/efeitos da radiação , Tolerância a Radiação/fisiologia , Simbiose , Raios Ultravioleta , Microbiologia da Água , Especificidade da Espécie
12.
Iran J Parasitol ; 8(3): 481-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24454444

RESUMO

BACKGROUND: Poor hygiene will provide good condition for corneal infections by opportunistic free-living amoebae (FLA) in soft contact lens wearers. In the present study an amoebic keratitis due to Hartmannella has been recognized in a 22-year-old girl with a history of improper soft contact lens use. She had unilateral keratitis on her left eye. Her clinical signs were eye pain, redness, blurred vision and photophobia. The round cysts of free-living amoebae were identified in non-nutrient agar medium by light microscopy. These cysts were suspected to be Hartmannella using morphological criteria. A PCR assay has been confirmed that the round cysts were belonged to H. vermiformis.

13.
Iran J Parasitol ; 7(2): 47-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109945

RESUMO

BACKGROUND: Geothermal waters could be suitable niches for thermophilic free living amoebae including Naegleria and Hartmannella. Ardebil Province, northwest Iran is popular for having many hot springs for recreational and health purposes activity. The present research is the first molecular based investigation regarding the presence of Naegleria and Hartmannella in the hot springs of Ardebil Province in Iran. METHODS: Overall, 30 water samples were taken from waters of thermal hot springs in Ardebil Province, Iran during 2010-2011. All collected samples were transferred to Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Cultivation of concentrated water samples was performed using culture-enrichment method. Cloning of the target amoebae was obtained and morphological and molecular analysis was done using page key combined with two sets of primers, respectively. Sequence analysis and homology search was used for strains identification. RESULTS: Of 30 water samples, 8 (26.7%) were positive for thermotolerant Vahlkampfiids and Hartmannella based on morphological characteristics of vegetative form and double walled cysts. Cloning of the target amoebae were done successfully. Sequencing of the positive isolates revealed that the strains belonged to Naegleria (N. carteri and N. spp) and H. vermiformis. CONCLUSION: The result highlights a need for improved filtration and disinfection and periodic monitoring of recreational thermal waters in order to prevent disease related to free- living amoebae. This is the first comprehensive molecular study of thermophilic Naegleria and Hartmannella in hot springs of Iran.

14.
Front Microbiol ; 2: 78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747796

RESUMO

Francisella tularensis is a gram negative facultative intracellular bacterium that causes the zoonotic disease tularemia. Free-living amebae, such as Acanthamoeba and Hartmannella, are environmental hosts of several intracellular pathogens. Epidemiology of F. tularensis in various parts of the world is associated with water-borne transmission, which includes mosquitoes and amebae as the potential host reservoirs of the bacteria in water resources. In vitro studies showed intracellular replication of F. tularensis within A. castellanii cells. Whether ameba is a biological reservoir for Francisella in the environment is not known. We used Hartmannella vermiformis as an amebal model system to study the intracellular life of F. novicida. For the first time we show that F. novicida survives and replicates within H. vermiformis. The iglC mutant strain of F. novicida is defective for survival and replication not only within A. castellanii but also in H. vermiformis cells. In contrast to mammalian cells, where bacteria replicate in the cytosol, F. novicida resides and replicates within membrane-bound vacuoles within the trophozoites of H. vermiformis. In contrast to the transient residence of F. novicida within acidic vacuoles prior to escaping to the cytosol of mammalian cells, F. novicida does not reside transiently or permanently in an acidic compartment within H. vermiformis when examined 30 min after initiation of the infection. We conclude that F. tularensis does not replicate within acidified vacuoles and does not escape into the cytosol of H. vermiformis. The Francisella pathogenicity island locus iglC is essential for intra-vacuolar proliferation of F. novicida within H. vermiformis. Our data show a distinct intracellular lifestyle for F. novicida within H. vermiformis compared to mammalian cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa