Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 264: 115424, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672939

RESUMO

The Atlantic salmon (Salmo salar) population in the Baltic Sea consists of wild and hatchery-reared fish that have been released into the sea to support salmon stocks. During feeding migration, salmon migrate to different parts of the Baltic Sea and are exposed to various biotic and abiotic stressors, such as organohalogen compounds (OHCs). The effects of salmon origin (wild or hatchery-reared), feeding area (Baltic Main Basin, Bothnian Sea, and Gulf of Finland), and OHC concentration on the differences in hepatic proteome of salmon were investigated. Multi-level analysis of the OHC concentration, transcriptome, proteome, and oxidative stress biomarkers measured from the same salmon individuals were performed to find the key variables (origin, feeding area, OHC concentrations, and oxidative stress) that best account for the differences in the transcriptome and proteome between the salmon groups. When comparing wild and hatchery-reared salmon, differences were found in xenobiotic and amino acid metabolism-related pathways. When comparing salmon from different feeding areas, the amino acid and carbohydrate metabolic pathways were notably different. Several proteins found in these pathways are correlated with the concentrations of polychlorinated biphenyls (PCBs). The multi-level analysis also revealed amino acid metabolic pathways in connection with PCBs and oxidative stress variables related to glutathione metabolism. Other pathways found in the multi-level analysis included genetic information processes related to ribosomes, signaling and cellular processes related to the cytoskeleton, and the immune system, which were connected mainly to the concentrations of Polychlorinated biphenyls and Dichlorodiphenyltrichloroethane and their metabolites. These results suggest that the hepatic proteome of salmon in the Baltic Sea, together with the transcriptome, is more affected by the OHC concentrations and oxidative stress of the feeding area than the origin of the salmon.


Assuntos
Bifenilos Policlorados , Salmo salar , Humanos , Animais , Salmo salar/genética , Proteoma , Estresse Oxidativo , Aminoácidos
2.
Ecotoxicol Environ Saf ; 216: 112194, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33862436

RESUMO

The use of ethylenediaminetetraacetic acid (EDTA) during bivalve hatchery production is thought to improve larval yields due to the reduced exposure to toxic metals (such as Cu); however, few studies have focused on the bioavailability of metals during the rearing process. Greenshell™ mussels (Perna canaliculus) were reared for 48 h with and without EDTA (12 µM) exposure and larvae were subsequently raised to 21 days post-fertilisation with and without EDTA exposure. Survival, shell length, algal ingestion rate, swimming activity, total metal concentration in water, bioavailable metal concentrations and larval metal accumulation were monitored for the 21 day period. Larval fitness (specifically D-yields) was improved on day 2 in the EDTA treatment, whereas an overall negative effect of EDTA treatment on fitness was observed on day 10 and 21. During the first 48 h, increased survival in the EDTA treatment is believed to be due to the reduction of bioavailable Zn concentrations in the rearing seawater. No other metal (essential or non-essential) displayed a consistent trend when comparing metal bioavailability to any of the fitness parameters measured throughout the experiment. Though the measured metal bioavailability was not clearly linked to fitness, the uptake of Al, P, Cr, Fe, Co, Ni, Zn, As, Cd, and Hg by P. canaliculus was reduced during the first 48 h, suggesting that the biological regulation of these elements is just as important as the bioavailability. Overall, treatment of the rearing seawater with 12 µM EDTA is effective for improving Greenshell™ mussel larval yields by decreasing metal bioavailability during the first two days of development but has minimal benefit between day 2 and 21.

3.
J Fish Biol ; 84(1): 178-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24383804

RESUMO

This study investigated the development of hypo-osmoregulatory capacity and timing of downstream migration in wild Atlantic salmon Salmo salar smolts from the River Stjørdalselva and stocked young-of-the-year (YOY), derived S. salar smolts from the tributary River Dalåa. Both wild and stocked S. salar smolts developed seawater (SW) tolerance in early May, persisting through June, measured as their ability to regulate plasma osmolality and chloride following 24 h SW (salinity = 35) exposure. Although the majority of downstream migration among the stocked S. salar smolts occurred later than observed in their wild counterparts, the development of SW tolerance occurred concurrently. The wild S. salar from Stjørdalselva and stocked YOY smolts from the River Dalåa started to migrate on the same cumulative day-degrees (D°). The study revealed no downstream migration before development of SW tolerance. This emphasizes the importance of incorporating physiological status when studying environmental triggers for downstream migration of S. salar smolts. Overall, these findings suggest that the onset of smolt migration in stocked S. salar smolts was within the smolt window from an osmoregulatory point of view.


Assuntos
Adaptação Fisiológica , Migração Animal , Salmo salar/fisiologia , Água do Mar , Animais , Meio Ambiente , Noruega
4.
Mol Ecol Resour ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36760032

RESUMO

Captive rearing in salmon hatcheries can have considerable impacts on both fish phenotype and fitness within a single generation, even in the absence of genetic change. Evidence for hatchery-induced changes in DNA methylation is becoming abundant, though questions remain on the sex-specificity of these effects, their persistence until spawning and potential for transmission to future generations. Here we performed whole genome methylation sequencing of fin tissue for 16 hatchery and 16 wild Atlantic salmon (Salmo salar) returning to spawn in the Rimouski River, Québec, Canada. We identified two cohorts of hatchery-reared salmon through methylation analysis, one of which was epigenetically similar to wild fish, suggesting that supplementation efforts may be able to minimize the epigenetic effects of hatchery rearing. We found considerable sex-specific effects of hatchery rearing, with few genomic regions being affected in both males and females. We also analysed the methylome of 32 F1 offspring from four groups (pure wild, pure hatchery origin and reciprocal hybrids). We found that few epigenetic changes due to parental hatchery rearing persisted in the F1 offspring though the patterns of inheritance appear to be complex, involving nonadditive effects. Our results suggest that the epigenetic effects of hatchery rearing can be minimal in F0 . There may also be minimal epigenetic inheritance and rapid loss of epigenetic changes associated with hatchery rearing. However, due to sex-specificity and nonadditive patterns of inheritance, methylation changes due to captive rearing are rather complex and the field would benefit from further research on minimizing the epigenetic effects of captive rearing in conservation efforts.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33930773

RESUMO

Environmental enrichment is used to increase structural complexity of captive rearing systems and has been shown to provoke a wide range of effects in the kept animals. Here we studied the effects of enrichment on DNA methylation patterns at the whole-genome level in the brain of rainbow trout reared in an aquaculture setting. We investigated the epigenetic effects between different types of enrichment (natural substrate vs. artificial substrate vs. barren) in three developmental stages (egg vs. alevin vs. fry) and as enrichment was discontinued at the fingerling stage by means of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. While enrichment did not affect growth in body size, we found enrichment to affected global DNA methylation in the brain at the egg and alevin stage, i.e., the period during development where the animals are in close physical contact with the substrate. At these stages, trout reared on the two substrates differed more from the control than the substrates differed from each other. Only minor differences between rearing environments were detected following emergence at the fry stage. When enrichment was discontinued during the rearing of fingerlings, no differences in DNA methylation patterns were observed between the rearing environments. Our results provide further evidence on the effects of enrichment in the captive rearing of fish and show that enrichment can even modulate epigenetic patterns. The effect on the epigenome may be causal for the previously reported effects of enrichment on gene expression, behaviour and brain development.


Assuntos
Encéfalo/metabolismo , Meio Ambiente , Epigênese Genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Oncorhynchus mykiss/genética , Transcriptoma , Animais , Aquicultura , Metilação de DNA , Proteínas de Peixes/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa